Abstract

A detrimental pulse distortion mechanism inherent to nonlinear chirped-pulse amplification systems is revealed and analyzed. When seeding the nonlinear amplification stage with pulses possessing weak side-pulses, the Kerr-nonlinearity causes a transfer of energy from the main pulse to side pulses. The resulting decrease in pulse contrast is determined by the accumulated nonlinear phase-shift (i.e., the B-integral) and the initial pulse-contrast. The energy transfer can be described by Bessel-functions. Thus, applications relying on a high pulse-contrast demand a low B-integral of the amplification system and a master-oscillator that exhibits an excellent pulse-contrast. In particular, nonlinear fiber CPA-systems operated at B-integrals far beyond π have to be revised in this context.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics 3rd Edition (Academic Press, 2001).
  3. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994).
    [CrossRef] [PubMed]
  4. C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100m core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119 (2006).
    [CrossRef]
  5. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  6. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  7. D. N. Schimpf, J. Limpert, and A. Tünnermann, "Controlling the influence of SPM in fiber-based chirped pulse amplification systems by using an actively shaped parabolic spectrum," Opt. Express 15, 16945-16953 (2007).
    [CrossRef] [PubMed]
  8. T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).
  9. A. Braun, S. Kane, and T. Norris, "Compensation of self-phase modulation in chirped-pulse amplification laser systems," Opt. Lett. 22, 615-617 (1997).
    [CrossRef] [PubMed]
  10. A. Galvanauskas, G. C. Cho, A. Hariharan, M. E. Fermann, and D. Harter, "Generation of high-energy femtosecond pulses in multi-core Yb-fiber chirped-pulse amplification systems," Opt. Lett. 26, 935-937 (2001).
    [CrossRef]
  11. A. Galvanauskas, "Mode-scalable Fiber-Based Chirped Pulse Amplification Systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
    [CrossRef]
  12. L. Kuznetsova and F. W. Wise, "Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification," Opt. Lett. 32, 2671-2673 (2007).
    [CrossRef] [PubMed]
  13. C. Dorrer and J. Bromage, "Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses," Opt. Express 16, 3058-3068 (2008).
    [CrossRef] [PubMed]
  14. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, "Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples," Opt. Express 16, 8876-8886 (2008).
    [CrossRef] [PubMed]
  15. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Yu. Tenyakov, "Contrast degradation in a chirpedpulse amplifier due to generation of prepulses by postpulses," Opt. Express 16, 3178-3190 (2008).
    [CrossRef] [PubMed]
  16. I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
    [CrossRef]
  17. X. D. Cao, D. D. Meyerhofer, and G. P. Agrawal, "Optimization of optical beam steering in nonlinear Kerr media by spatial phase modulation," J. Opt. Soc. Am. B 11, 2224-2231 (1994).
    [CrossRef]
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  19. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
    [CrossRef]
  20. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992), pp. 93-98.
  21. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," in Generating Function for the Bessel-function, formula 9.1.41 (Dover Publications, 1970).
  22. B. C. Walker, C. Toth, D. Fittinghoff, and T. Guo, "Theoretical and experimental spectral phase error analysis for pulsed laser fields," J. Opt. Soc. Am. B 16, 1292-1298 (1999).
    [CrossRef]
  23. C. Nielsen, B. Ortac, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting selfsimilar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]

2008

2007

2006

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100m core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

2005

2001

1999

1998

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

1997

1994

1985

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Agrawal, G. P.

Akbulut, M.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Andrejco, M. J.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Booth, T.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Braun, A.

Bromage, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100m core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

Cao, X. D.

Cho, G. C.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100m core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

Didenko, N. V.

DiGovanni, D. J.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Ditmire, T.

Dorrer, C.

Eidam, T.

Fermann, M. E.

Fittinghoff, D.

Galvanauskas, A.

Guo, T.

Hariharan, A.

Harter, D.

Hartl, I.

Headley, C.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Hohmuth, R.

Imeshev, G.

Jasapara, J.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Kane, S.

Kawanishi, S.

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

Kolner, B. H.

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

Konyashchenko, A. V.

Kuznetsova, L.

Limpert, J.

Liu, Z.

Lutsenko, A. P.

Meyerhofer, D. D.

Mori, K.

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

Mourou, G.

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Nielsen, C.

Norris, T.

Ortac, B.

Perry, M. D.

Richter, W.

Röser, F.

Rothhardt, J.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Shah, L.

Shake, I.

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

Strickland, D. M.

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Stuart, B. C.

Takara, H.

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

Tenyakov, S. Yu.

Toth, C.

Tünnermann, A.

Vaissie, L.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Walker, B. C.

Wise, F. W.

Yablon, A. D.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Yamabayashi, Y.

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

Yilmaz, T.

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Appl. Phys. Lett.

C. D. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100m core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119 (2006).
[CrossRef]

Electron. Lett.

I. Shake, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34,1600-1601 (1998).
[CrossRef]

IEEE J. Quantum Electron.

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Galvanauskas, "Mode-scalable Fiber-Based Chirped Pulse Amplification Systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

D. M. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

T. Yilmaz, L. Vaissie, M. Akbulut, T. Booth, J. Jasapara, M. J. Andrejco, A. D. Yablon, C. Headley, and D. J. DiGovanni, "Large-mode-area Er-doped fiber chirped pulse amplification system for high-energy sub-picosecond pulses at 1.55 m," Proc. SPIE 6873, 687354 (2008).

Other

G. P. Agrawal, Nonlinear Fiber Optics 3rd Edition (Academic Press, 2001).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992), pp. 93-98.

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," in Generating Function for the Bessel-function, formula 9.1.41 (Dover Publications, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental and simulated spectrum of a main pulse and with a post pulse, (b) corresponding spectra after nonlinear amplification. The B-integral is about 3 rad.

Fig. 2.
Fig. 2.

Stretched state prior to nonlinear amplification: (a) the temporal pulse-profile is determined by the spectrum. The temporal FWHM of the stretched pulse is 500ps. (b) the linear stretching chirp maps the spectrum into time-domain, (c) the spectrum remains unchanged during the stretching. The spectral modulations have a frequency of Δt=10ps. (d) parabolic spectral phase, and (e) parabolic spectral phase corresponding to the linear chirp. The corresponding state after nonlinear amplification is shown in Fig. 3.

Fig. 3.
Fig. 3.

State of the pulse after nonlinear amplification when starting with the state shown in Fig. 2: (a) temporal pulse. The temporal FWHM is 500 ps. In the numerical calculation of the nonlinear amplification, the dispersion is neglected. The SPM does not affect the intensity distribution. (b) chirp. Modulations are superimposed on the linear stretching chirp because of SPM, (c) spectrum of the pulse, which is modified due to the influence of SPM. The spectrum was obtained by numerical calculation. (d) residual non-parabolic spectral phase at the output of the CPA-system due to the nonlinear action. (e) temporal self-phase modulation (blue curve), this phase adds onto the existing stretching phase shown in Fig. 2(e), and its non-parabolic part (magenta curve).

Fig. 4.
Fig. 4.

Comparision between the numerical calculation of the pulse after the nonlinear CPA-system (B=20 rad) and the analytical result (B=20 rad) according to Eq. (14). The input pulse is also shown (B=0 rad).

Fig. 5.
Fig. 5.

(a) Relative intensities of the pulses contained within the multi-pulse as a function of the parameter a=0.7B2√r, (b) total intensity that is in the side pulses relative to the intensity in the main pulse as a function of the value of the B-integral and for different initial pulse-contrasts r [dB].

Fig. 6.
Fig. 6.

(a) Spectral modulation superimposed on the envelope of the spectrum at the output of the nonlinear amplification stage (B=20 rad) the intial contrast relative to the post-pulse is r=40dB, the horizontal line corresponds to the state shown in Fig. 3(c), (b) corresponding residual spectral phase at the output of the nonlinear CPA-system, the horizontal line corresponds to the state shown in Fig. 3(d), (c) pulse-contrast at the output of the nonlinear CPA-system

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A ~ 0 ( Ω ) + r A ~ 0 ( Ω ) exp ( i Ω Δ t ) 2 = F 2 s ( Ω ) [ 1 + r + 2 r cos ( Ω Δ t ) ] .
A st ( T ) = 1 2 π exp ( i Ω T ) exp ( i ϕ ( 2 ) 2 Ω 2 ) [ A ~ 0 ( Ω ) + r A ~ 0 ( Ω ) exp ( i Ω Δ t ) ] .
A st ( T ) = F i 2 πϕ ( 2 ) [ exp ( i T 2 2 ϕ ( 2 ) ) s ( T ϕ ( 2 ) ) + r exp ( i ( T Δ t ) 2 2 ϕ ( 2 ) ) s ( T Δ t ϕ ( 2 ) ) ] .
A st ( T ) 2 = F 2 2 π ϕ ( 2 ) [ s ( T ϕ ( 2 ) ) + rs ( T Δ t ϕ ( 2 ) ) + 2 rs ( T ϕ ( 2 ) ) s ( T Δ t ϕ ( 2 ) ) cos ( T Δ t ϕ ( 2 ) ( Δ t ) 2 2 ϕ ( 2 ) ) ] .
A amp ( T ) = A st ( T ) exp ( gL 2 ) exp ( i γ L eff A st ( T ) 2 ) .
A amp ( T ) exp ( g L 2 ) i 2 πϕ ( 2 ) A ~ 0 ( T ϕ ( 2 ) ) exp ( i T 2 2 ϕ ( 2 ) ) exp ( ia cos ( T Δ t ϕ ( 2 ) ( Δ t ) 2 2 ϕ ( 2 ) ) ) .
exp ( ia cos ( x b ) ) = m = J m ( a ) i m exp ( imx ) exp ( + imb ) ,
A amp ( T ) = exp ( g L 2 ) i 2 πϕ ( 2 ) m = i m J m ( a ) A ~ 0 ( T ϕ ( 2 ) ) exp ( i φ m ( T ) ) ,
φ m ( T ) = T 2 2 ϕ ( 2 ) m T Δ t ϕ ( 2 ) + m ( Δ t ) 2 2 ϕ ( 2 ) .
T s = ϕ ( 2 ) Ω m Δ t .
A ~ amp ( Ω ) = d T exp ( i Ω T ) A amp ( T )
= exp ( gL 2 ) m = i m J m ( a ) A ~ 0 ( Ω m Δ t ϕ ( 2 ) ) exp [ i ( Ω T s + φ m ( T s ) ) ] ,
Ω T s + φ m ( T s ) = ϕ ( 2 ) 2 Ω 2 m Δ t Ω + m ( 1 + m ) ( Δ t ) 2 2 ϕ ( 2 ) .
1 2 π d Ω exp ( i Ω T ) exp ( i m Δ t Ω ) A ~ 0 ( Ω m Δ t ϕ ( 2 ) )
A out ( T ) = exp ( gL 2 ) m = i m J m ( a ) A 0 ( T + m Δ t ) exp ( i φ m out ( T ) )
φ in out ( T ) = m Δ t T ϕ ( 2 ) + m ( 1 m ) ( Δ t ) 2 2 ϕ ( 2 ) .

Metrics