Abstract

We present a method to generate an optical reference comb signal with subpicometer wavelength accuracy. XPM nonlinear effect in a fiber is used to get an optical frequency comb signal, free of frequency chirp and wavelength instabilities, from a pulsed gain-switched laser diode. Principles of such comb generation are presented as well as the application of this comb as a ruler to measure frequency differences in high resolution optical spectrum measurements. To confirm this method, Brillouin filtering optical spectrometric technique is used to characterize a modulated optical source. Typical resolution of this technique allows 0.08 pm wavelength accuracy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
    [CrossRef]
  2. S. Yang and X. Bao, "Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser," Phys. Rev. A 74, 033805 (2006).
    [CrossRef]
  3. A. Villafranca, J. Lasobras, J. A. Lazaro, and I. Garces, "Characterization of the main semiconductor laser static and dynamic working parameters from CW Optical Spectrum Measurements," IEEE J. Quantum Electron. 43, 116-122 (2007).
    [CrossRef]
  4. C. Heras, J. Subias, J. Pelayo, and F. Villuendas "High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter," Opt. Express 15, 3708-3714 (2007).
    [CrossRef] [PubMed]
  5. T.-J. Ahn and D. Kim, "Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation," Appl. Opt. 46, 2394-2400 (2007).
    [CrossRef] [PubMed]
  6. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5- mm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
    [CrossRef]
  7. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, "High-resolution spectroscopy with a femtosecond laser frequency comb," Opt. Lett. 30,1734-1736 (2005).
    [CrossRef] [PubMed]
  8. E. V. Baklanov and P. V. Pokasov, "Optical frequency standards and femtosecond lasers," Quantum Electron. 33, 383-400 (2003).
    [CrossRef]
  9. R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
    [CrossRef]
  10. J. N. Eckstein, A. I. Ferguson, and T. W. Hansch "High-resolution two-photon spectroscopy with picosecond light pulses," Phys. Rev. Lett. 40, 847-850 (1978).
    [CrossRef]
  11. P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
    [CrossRef]
  12. L. Chusseau, "Propagation of Single-Mode 1.5-μm Gain-Switched semiconductor Laser Pulses in Normally Dispersive Fibers," IEEE J. Quantum Electron. 30, 2711-2720 (1994).
    [CrossRef]
  13. D. Jones, S. Diddams, M. Taubman, S. Cundiff, L. Ma, and J. Hall, "Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies," Opt. Lett. 25,308-310 (2000).
    [CrossRef]
  14. C. Dorrer and D. N. Maywar, "RF Spectrum Analysis of Optical Signals Using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
    [CrossRef]

2007 (3)

2006 (2)

S. Yang and X. Bao, "Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser," Phys. Rev. A 74, 033805 (2006).
[CrossRef]

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

2005 (2)

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, "High-resolution spectroscopy with a femtosecond laser frequency comb," Opt. Lett. 30,1734-1736 (2005).
[CrossRef] [PubMed]

2004 (1)

C. Dorrer and D. N. Maywar, "RF Spectrum Analysis of Optical Signals Using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
[CrossRef]

2003 (1)

E. V. Baklanov and P. V. Pokasov, "Optical frequency standards and femtosecond lasers," Quantum Electron. 33, 383-400 (2003).
[CrossRef]

2001 (1)

R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
[CrossRef]

2000 (1)

1996 (1)

1994 (1)

L. Chusseau, "Propagation of Single-Mode 1.5-μm Gain-Switched semiconductor Laser Pulses in Normally Dispersive Fibers," IEEE J. Quantum Electron. 30, 2711-2720 (1994).
[CrossRef]

1978 (1)

J. N. Eckstein, A. I. Ferguson, and T. W. Hansch "High-resolution two-photon spectroscopy with picosecond light pulses," Phys. Rev. Lett. 40, 847-850 (1978).
[CrossRef]

Ahn, T.-J.

Anandarajah, P. M.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Awaji, Y.

Baklanov, E. V.

E. V. Baklanov and P. V. Pokasov, "Optical frequency standards and femtosecond lasers," Quantum Electron. 33, 383-400 (2003).
[CrossRef]

Bao, X.

S. Yang and X. Bao, "Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser," Phys. Rev. A 74, 033805 (2006).
[CrossRef]

Barry, L. P.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Bartels, A.

Chusseau, L.

L. Chusseau, "Propagation of Single-Mode 1.5-μm Gain-Switched semiconductor Laser Pulses in Normally Dispersive Fibers," IEEE J. Quantum Electron. 30, 2711-2720 (1994).
[CrossRef]

Clarke, A.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Cundiff, S.

de Labachelerie, M.

Diddams, S.

Diddams, S. A.

Dorrer, C.

C. Dorrer and D. N. Maywar, "RF Spectrum Analysis of Optical Signals Using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
[CrossRef]

Eckstein, J. N.

J. N. Eckstein, A. I. Ferguson, and T. W. Hansch "High-resolution two-photon spectroscopy with picosecond light pulses," Phys. Rev. Lett. 40, 847-850 (1978).
[CrossRef]

Edvell, G.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Ferguson, A. I.

J. N. Eckstein, A. I. Ferguson, and T. W. Hansch "High-resolution two-photon spectroscopy with picosecond light pulses," Phys. Rev. Lett. 40, 847-850 (1978).
[CrossRef]

Garces, I.

A. Villafranca, J. Lasobras, J. A. Lazaro, and I. Garces, "Characterization of the main semiconductor laser static and dynamic working parameters from CW Optical Spectrum Measurements," IEEE J. Quantum Electron. 43, 116-122 (2007).
[CrossRef]

Gerginov, V.

Guignard, C.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Hall, J.

Hansch, T. W.

J. N. Eckstein, A. I. Ferguson, and T. W. Hansch "High-resolution two-photon spectroscopy with picosecond light pulses," Phys. Rev. Lett. 40, 847-850 (1978).
[CrossRef]

Hänsch, T. W.

R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
[CrossRef]

Harvey, J. D.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Heras, C.

Heras, C. D.

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Hollberg, L.

Holzwarth, R.

R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
[CrossRef]

Jones, D.

Kim, D.

Kourogi, M.

Lasobras, J.

A. Villafranca, J. Lasobras, J. A. Lazaro, and I. Garces, "Characterization of the main semiconductor laser static and dynamic working parameters from CW Optical Spectrum Measurements," IEEE J. Quantum Electron. 43, 116-122 (2007).
[CrossRef]

Lazaro, J. A.

A. Villafranca, J. Lasobras, J. A. Lazaro, and I. Garces, "Characterization of the main semiconductor laser static and dynamic working parameters from CW Optical Spectrum Measurements," IEEE J. Quantum Electron. 43, 116-122 (2007).
[CrossRef]

Ma, L.

Maywar, D. N.

C. Dorrer and D. N. Maywar, "RF Spectrum Analysis of Optical Signals Using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
[CrossRef]

Nakagawa, K.

Pelayo, J.

C. Heras, J. Subias, J. Pelayo, and F. Villuendas "High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter," Opt. Express 15, 3708-3714 (2007).
[CrossRef] [PubMed]

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Pellejer, E.

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Pokasov, P. V.

E. V. Baklanov and P. V. Pokasov, "Optical frequency standards and femtosecond lasers," Quantum Electron. 33, 383-400 (2003).
[CrossRef]

Reid, D.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Rensing, M.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

Subias, J.

Subias Domingo, J. M.

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Tanner, C. E.

Taubman, M.

Udem, Th.

R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
[CrossRef]

Villafranca, A.

A. Villafranca, J. Lasobras, J. A. Lazaro, and I. Garces, "Characterization of the main semiconductor laser static and dynamic working parameters from CW Optical Spectrum Measurements," IEEE J. Quantum Electron. 43, 116-122 (2007).
[CrossRef]

Villuendas, F.

C. Heras, J. Subias, J. Pelayo, and F. Villuendas "High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter," Opt. Express 15, 3708-3714 (2007).
[CrossRef] [PubMed]

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

Yang, S.

S. Yang and X. Bao, "Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser," Phys. Rev. A 74, 033805 (2006).
[CrossRef]

Zimmermann, M.

R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

A. Villafranca, J. Lasobras, J. A. Lazaro, and I. Garces, "Characterization of the main semiconductor laser static and dynamic working parameters from CW Optical Spectrum Measurements," IEEE J. Quantum Electron. 43, 116-122 (2007).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, "Optical Clockworks and the Measurement of Laser Frequencies with a Mode-Locked Frequency Comb," IEEE J. Quantum Electron. 37, 1493-1501 (2001).
[CrossRef]

L. Chusseau, "Propagation of Single-Mode 1.5-μm Gain-Switched semiconductor Laser Pulses in Normally Dispersive Fibers," IEEE J. Quantum Electron. 30, 2711-2720 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, "Optimized Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Nonlinearly Chirped Grating," IEEE J. Sel. Top. Quantum Electron. 12,255-264 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, "Very high resolution optical spectrometry by Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
[CrossRef]

J. Lightwave Technol. (1)

C. Dorrer and D. N. Maywar, "RF Spectrum Analysis of Optical Signals Using Nonlinear Optics," J. Lightwave Technol. 22, 265-274 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

S. Yang and X. Bao, "Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser," Phys. Rev. A 74, 033805 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. N. Eckstein, A. I. Ferguson, and T. W. Hansch "High-resolution two-photon spectroscopy with picosecond light pulses," Phys. Rev. Lett. 40, 847-850 (1978).
[CrossRef]

Quantum Electron. (1)

E. V. Baklanov and P. V. Pokasov, "Optical frequency standards and femtosecond lasers," Quantum Electron. 33, 383-400 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

experimental setup for optical frequency comb generation.

Fig. 2.
Fig. 2.

Optical spectrum of the gain switched laser diode, 12 picoseconds pulse width at 100 MHz pulse repetition frequency, measured at point A.

Fig. 3.
Fig. 3.

Obtained optical frequency comb for the TLS centered at 1544.9 nm, measured at point C (orange curve). Original TLS optical spectrum, measured at point B (red curve).

Fig. 4.
Fig. 4.

Obtained optical frequency comb (zoom of the orange curve of Fig. 3).

Fig. 5.
Fig. 5.

Measured SUT optical spectrum (blue curve) and optical frequency comb (orange curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = 2 π n 2 L eff λ 0 A eff I ( t ) = m I ( t )
I ( ω ) = δ ( ω ω 0 ) + m 2 · S ( ω ω 0 )

Metrics