Abstract

Image dipole effects are highly dependent on the polarization direction, constructive (destructive) interference between real and image dipoles for the vertically (horizontally) aligned one in the vicinity of metal surfaces, respectively. This polarization-reversal of the image dipole effects is quantitatively investigated by using a gold nanoparticle functionalized tip as a local dipolar scatterer and a propagating surface plasmon polariton as an excitation source of dipoles. The polarization-resolved detection technique is applied to separate the radiations of the vertical and the horizontal dipoles from each other. In our study, the image dipole effects on the far-field detected signals are fully explained by the Fabry-Perot like interference between the radiations from the real and the image dipoles, and by considering the finite size effects of the gold nanoparticle.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 31,4563 (1992). http://ao.osa.org/abstract.cfm?id=40089
    [CrossRef] [PubMed]
  2. F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
    [CrossRef]
  3. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). http://ol.osa.org/abstract.cfm?id=12150
    [CrossRef] [PubMed]
  4. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5
    [CrossRef] [PubMed]
  5. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182,321-328 (2000).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000080000001000025000001&idtype=cvips&gifs=yes
    [CrossRef]
  7. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
    [CrossRef] [PubMed]
  8. B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000077000024003980000001&idtype=cvips&gifs=yes
    [CrossRef]
  9. Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
    [CrossRef] [PubMed]
  10. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html
    [CrossRef] [PubMed]
  11. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000024005089000001&idtype=cvips&gifs=yes
    [CrossRef]
  12. Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
    [CrossRef] [PubMed]
  13. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007).
    [CrossRef] [PubMed]
  14. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). http://prola.aps.org/abstract/PR/v66/i7-8/p163_1
    [CrossRef]
  15. K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
    [CrossRef] [PubMed]
  16. T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html
    [CrossRef] [PubMed]
  17. E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
    [CrossRef] [PubMed]
  18. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
    [CrossRef] [PubMed]
  19. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
    [CrossRef] [PubMed]
  20. A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes
    [CrossRef]
  21. K. G. Lee, H. W. Kihm, J. E. Kihm et al., "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007). http://www.nature.com/nphoton/journal/v1/n1/abs/nphoton.2006.37.html
    [CrossRef]
  22. K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007).
    [CrossRef] [PubMed]
  23. L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes
    [CrossRef]
  24. K. G. Lee, H. W. Kihm, J. E. Kihm et al., "On the concept of imaging nanoscale vector fields," Nat. Photonics 1, 243-244 (2007). http://www.nature.com/nphoton/journal/v1/n5/full/nphoton.2007.68b.html
    [CrossRef]
  25. H. Reather, Surface Polaritons on Smooth and Rough Surfaces and on. Gratings (Springer-Verlag:Berlin, 1988).
  26. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
    [CrossRef] [PubMed]
  27. J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95, 203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
    [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc.: New York, 1998).
  29. O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1
    [CrossRef] [PubMed]
  30. C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
    [CrossRef]
  31. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press: New York, 2006).
  32. K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008).
    [CrossRef]

2008

K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008).
[CrossRef]

2007

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007).
[CrossRef] [PubMed]

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html
[CrossRef] [PubMed]

2006

Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

2005

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
[CrossRef] [PubMed]

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95, 203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

2004

L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes
[CrossRef]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

2003

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000024005089000001&idtype=cvips&gifs=yes
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes
[CrossRef]

2002

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000080000001000025000001&idtype=cvips&gifs=yes
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html
[CrossRef] [PubMed]

2001

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

2000

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000077000024003980000001&idtype=cvips&gifs=yes
[CrossRef]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182,321-328 (2000).
[CrossRef]

1995

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5
[CrossRef] [PubMed]

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1
[CrossRef] [PubMed]

C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
[CrossRef]

1994

F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). http://ol.osa.org/abstract.cfm?id=12150
[CrossRef] [PubMed]

1992

1990

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
[CrossRef] [PubMed]

1944

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). http://prola.aps.org/abstract/PR/v66/i7-8/p163_1
[CrossRef]

Ahn, J. S.

Ahn, K. J.

K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007).
[CrossRef] [PubMed]

Ahn, S. H.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). http://prola.aps.org/abstract/PR/v66/i7-8/p163_1
[CrossRef]

Betzig, R. E.

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
[CrossRef] [PubMed]

Cvitkovic, A.

Dereux, A.

C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1
[CrossRef] [PubMed]

Devel, M.

C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
[CrossRef]

Dogariu, A.

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95, 203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

Ellis, J.

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95, 203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

Gerton, J. M.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

Girard, C.

C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1
[CrossRef] [PubMed]

Harris, T. D.

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
[CrossRef] [PubMed]

Harush, S.

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
[CrossRef] [PubMed]

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000080000001000025000001&idtype=cvips&gifs=yes
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html
[CrossRef] [PubMed]

Inouye, Y.

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Kawata, S.

Keilmann, F.

R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000080000001000025000001&idtype=cvips&gifs=yes
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000077000024003980000001&idtype=cvips&gifs=yes
[CrossRef]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182,321-328 (2000).
[CrossRef]

Kihm, H. W.

Kim, D. S.

K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007).
[CrossRef] [PubMed]

Kim, Z. H.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
[CrossRef] [PubMed]

Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182,321-328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000077000024003980000001&idtype=cvips&gifs=yes
[CrossRef]

Kopelman, R.

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
[CrossRef] [PubMed]

Lee, K. G.

K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007).
[CrossRef] [PubMed]

Leone, S. R.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
[CrossRef] [PubMed]

Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

Lessard, G. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

Lewis, A.

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
[CrossRef] [PubMed]

Lieberman, K.

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
[CrossRef] [PubMed]

Lienau, C.

K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007).
[CrossRef] [PubMed]

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000024005089000001&idtype=cvips&gifs=yes
[CrossRef]

Liu, B.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
[CrossRef] [PubMed]

Ma, Z.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

Martin, O. J. F.

C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1
[CrossRef] [PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5
[CrossRef] [PubMed]

Medintz, I. L.

T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html
[CrossRef] [PubMed]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes
[CrossRef]

O???Boyle, M. P.

F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Ocelic, N.

Pons, T.

T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html
[CrossRef] [PubMed]

Quake, S. R.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Raschke, M. B.

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000024005089000001&idtype=cvips&gifs=yes
[CrossRef]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
[CrossRef] [PubMed]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes
[CrossRef]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Sapsford, K. E.

T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html
[CrossRef] [PubMed]

Suh, Y. D.

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html
[CrossRef] [PubMed]

Trautman, J. K.

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes
[CrossRef]

Wade, L. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

Weiner, J. S.

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5
[CrossRef] [PubMed]

F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Wolfe, R.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5
[CrossRef] [PubMed]

F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes
[CrossRef]

R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000080000001000025000001&idtype=cvips&gifs=yes
[CrossRef]

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000024005089000001&idtype=cvips&gifs=yes
[CrossRef]

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000077000024003980000001&idtype=cvips&gifs=yes
[CrossRef]

A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes
[CrossRef]

J. Microsc.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

J. Phys. Chem. B

Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

Nano Lett.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html
[CrossRef] [PubMed]

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html
[CrossRef] [PubMed]

Nature

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html
[CrossRef] [PubMed]

Opt. Commun.

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182,321-328 (2000).
[CrossRef]

K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). http://prola.aps.org/abstract/PR/v66/i7-8/p163_1
[CrossRef]

Phys. Rev. B

C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1
[CrossRef]

Phys. Rev. Lett.

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1
[CrossRef] [PubMed]

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95, 203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903
[CrossRef] [PubMed]

Science

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5
[CrossRef] [PubMed]

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0
[CrossRef] [PubMed]

Other

K. G. Lee, H. W. Kihm, J. E. Kihm et al., "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007). http://www.nature.com/nphoton/journal/v1/n1/abs/nphoton.2006.37.html
[CrossRef]

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc.: New York, 1998).

K. G. Lee, H. W. Kihm, J. E. Kihm et al., "On the concept of imaging nanoscale vector fields," Nat. Photonics 1, 243-244 (2007). http://www.nature.com/nphoton/journal/v1/n5/full/nphoton.2007.68b.html
[CrossRef]

H. Reather, Surface Polaritons on Smooth and Rough Surfaces and on. Gratings (Springer-Verlag:Berlin, 1988).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press: New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Polarization direction dependence of the image dipole effects at the vicinity of metal surfaces.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup. An etched glass fiber functionalized with GNP of 100 nm diameter is placed above a flat gold surface about 50 µm away from the slit position. A 780 nm cw Ti-Sapphire laser beam is incident from the bottom side of the sample to generate SPPs propagating in ± x-direction on air-gold interface. This propagating SPP is scattered by the GNP functionalized tip and a linear analyzer is placed in front of the detector for the axis resolved detection. The tip-sample distance (h) is varied from near- to far-field region, and the detection angle (ϕ) between the sample surface and the detector position vector is also changed.

Fig. 3.
Fig. 3.

(a). Experimentally measured tip-sample distance dependent signal intensity with the detection analyzer direction vertical (red) and horizontal (black) to the sample surface. Here, ϕ=33°. (b) The reflected light at the sample surface (dashed line) can be considered as the radiated field from the image dipole (i). And the mutual interaction of the real (upper) and the image (below) dipoles modifies the radiation properties of their own (ii). (c) Analytical calculation of the signal intensities depending on tip-sample distance for the vertical (red) and the horizontal (black) dipoles. Here, the strength ratio of two orthogonal dipoles (pz /px ) is determined by the magnitude ratio of the z- and the x-components of the excitation field, i. e. |Ez, SPP|/|Ex, SPP|. (d) Oscillation periods from the calculation (solid line) and the experiment (open circles). Inset: the solid angle of the objective, φs =16.3°.

Fig. 4.
Fig. 4.

(a). Squared values of the effective polarizability of GNP calculated in SDM for the vertical (red) and the horizontal (black) polarizations. Each value is normalized by the squared value of polarizability calculated in a homogeneous environment. (b) Signal intensities calculated by applying SDM (dashed lines) and CDM in Green-function formalism (solid lines) are shown together with the experimental results (open circles).

Fig. 5.
Fig. 5.

The whole volume of spherical shaped GNP is divided into approximately 500 identical sub-volumes and the relative contribution strength to the signal intensity is displayed in different size and color. The largest red one has the biggest contribution. Normalization applied for each case. For the vertical (a) and the horizontal (c) dipole cases at h=300 nm, the corresponding schematic pictures of the signal intensity profile are shown in (b) and (d), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E SPP ( r ) = ( E SPP , x , 0 , E SPP , z ) = E 0 ( cos ( k SPP x ω t ) , 0 , k SPP κ sin ( k SPP x ω t ) ) e κ z
I SPP , z I SPP , x = E SPP , z 2 E SPP , x 2 = ε Au
p z 2 p x 2 = z ̂ · ( α · E SPP ) 2 x ̂ · ( α · E SPP ) 2 ,
I s ( p ) = E s ( p ) orig + E s ( p ) imag 2 = E s ( p ) orig 2 ( 1 + R s ( p ) 2 + 2 R s ( p ) + cos ( φ delay , s ( p ) + φ diff ) )
E dipole = 1 4 π ε 0 { k 2 ( d ̂ × p ) d ̂ e ikr r + [ 3 d ̂ ( d ̂ · p ) p ] ( 1 r 3 ik r 2 ) e ikr } ,
E det ector = k 2 p z ( 1 + R s ( p ) 2 + 2 R s ( p ) cos ( φ delay , s ( p ) + φ diff ) ) 4 π ε 0 r 2 ( 0 , cos ϕ sin ϕ , cos 2 ϕ )

Metrics