Abstract

Transverse photodarkening loss variations in an LMA Yb-DCF are experimentally studied. Photodarkening rate depends on inversion, which is affected by the pump induced increase and signal induced depletion of the inversion. In double-clad fibers, intensity distributions of the pump and signal modes and their overlap with the core are significantly different, leading to transverse differences in inversion within the core. Moreover, practical fiber laser configurations aim at generating and preserving only the fundamental transverse-mode thus creating a high contrast in inversion within the core. Therefore, dramatically different rates of photodarkening across the core of the active fiber can be expected. We demonstrate the existence of transverse mode-induced photodarkening loss variations in an LMA Yb-DCF laser and discuss its implications. Composition-related transverse photodarkening loss variations are measured to be negligible in the studied Yb-DCF.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
    [CrossRef]
  2. J. Koponen, M. J. Söderlund, H. J. Hoffmann, and S. K. T. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Express 14, 11539-11544 (2006).
    [CrossRef] [PubMed]
  3. J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," in Fiber Lasers IV: Technology, Systems, and Applications, D. J. Harter, A. Tünnermann, J. Broeng, and C. Headley, Proc. SPIE 6453, 64531E-1-11 (2007).
  4. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, M. Podgorski, R. Bello Doua, and F. Salin, "Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber," Opt. Express 15, 1606-1611 (2007).
    [CrossRef] [PubMed]
  5. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. De Sandro, "Low photodarkening single cladding ytterbium fibre amplifier," Proc. SPIE 6453, 64530H-1-9 (2007).
    [CrossRef]
  6. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, "Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping," OFC 2005, paper OThC5.
  7. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, "Effect of heat and H2 gas on the photodarkening of Yb3+ fibers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, Technical Digest (Optical Society of America, Washington, DC, 2006), paper CTuQ5.
  8. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, "Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers," in Conf. Digest of CLEO Europe-EQEC 2007, CJ3-1-THU.
  9. S. Jetschke, S. Unger, U. Röpke, and J. Kirchof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power," Opt. Express 15, 14838-14843 (2007).
    [CrossRef] [PubMed]
  10. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, "Photodarkening in Yb-doped aluminosilicate fibers induced by 488nm irradiation," Opt. Lett. 32, 1626-1628 (2007).
    [CrossRef] [PubMed]
  11. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
    [CrossRef]
  12. M. Engholn, L. Norin, and D. �?berg, "Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation," Opt. Lett. 32, 3352-3354 (2007).
    [CrossRef]
  13. J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, J. Koplow, and M. Hotoleanu, "Photodarkening Rate in Yb-doped Silica Fibers," Appl. Opt. 47, 1247-1256 (2008).
    [CrossRef] [PubMed]
  14. J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442 (2000).
  15. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
  16. K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).
  17. M. Hotoleanu, J. Koponen, and T. Kokki, "Spatial Distribution of Photodarkening in Large Mode Area Ytterbium Doped Fibers," in Advanced Solid-State Photonics Conference 2008, Technical digest (Optical Society of America, 2008), paper WE23.
  18. R. Olshansky and S. M. Oaks, "Differential mode attenuation measurements in graded-index fibers," Appl. Opt. 17, 1830-1835 (1978).
    [CrossRef] [PubMed]

2008 (2)

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, J. Koplow, and M. Hotoleanu, "Photodarkening Rate in Yb-doped Silica Fibers," Appl. Opt. 47, 1247-1256 (2008).
[CrossRef] [PubMed]

K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).

2007 (4)

2006 (2)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

J. Koponen, M. J. Söderlund, H. J. Hoffmann, and S. K. T. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Express 14, 11539-11544 (2006).
[CrossRef] [PubMed]

2000 (1)

J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442 (2000).

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

1978 (1)

??berg, D.

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Basu, C.

Bello Doua, R.

Boullet, J.

Boyland, A. J.

Cadier, B.

K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Cardinal, T.

Engholn, M.

Goldberg, L.

J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442 (2000).

Grimm, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

Guillen, F.

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).

Hoffman, H. J.

Hoffmann, H. J.

Hotoleanu, M.

Jetschke, S.

Kirchhof, J.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

Kirchof, J.

Kliner, D.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, J. Koplow, and M. Hotoleanu, "Photodarkening Rate in Yb-doped Silica Fibers," Appl. Opt. 47, 1247-1256 (2008).
[CrossRef] [PubMed]

J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442 (2000).

Knudsen, S. N.

K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).

Koplow, J.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, J. Koplow, and M. Hotoleanu, "Photodarkening Rate in Yb-doped Silica Fibers," Appl. Opt. 47, 1247-1256 (2008).
[CrossRef] [PubMed]

J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442 (2000).

Koponen, J.

Manek-Hönninger, I.

Mattson, K. E.

K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).

Nilsson, J.

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, "Photodarkening in Yb-doped aluminosilicate fibers induced by 488nm irradiation," Opt. Lett. 32, 1626-1628 (2007).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).

Norin, L.

Oaks, S. M.

Olshansky, R.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Payne, D.

Podgorski, M.

Reichel, V.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

Robin, T.

K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).

Röpke, U.

Sahu, J. K.

Salin, F.

Schwuchow, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

Söderlund, M.

Söderlund, M. J.

Sones, C.

Tammela, S. K. T.

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).

Unger, S.

S. Jetschke, S. Unger, U. Röpke, and J. Kirchof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power," Opt. Express 15, 14838-14843 (2007).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

Yoo, S.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).

J. Non-Cryst. Solids (1)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, "Materials for high-power fiber lasers," J. Non-Cryst. Solids 352, 2399-2403 (2006).
[CrossRef]

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optics Lett. (1)

J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442 (2000).

Proc. SPIE (1)

K. E. Mattson, S. N. Knudsen, B. Cadier, and T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE 6873, 6873 (2008).

Other (6)

M. Hotoleanu, J. Koponen, and T. Kokki, "Spatial Distribution of Photodarkening in Large Mode Area Ytterbium Doped Fibers," in Advanced Solid-State Photonics Conference 2008, Technical digest (Optical Society of America, 2008), paper WE23.

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large-mode-area fibers," in Fiber Lasers IV: Technology, Systems, and Applications, D. J. Harter, A. Tünnermann, J. Broeng, and C. Headley, Proc. SPIE 6453, 64531E-1-11 (2007).

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. De Sandro, "Low photodarkening single cladding ytterbium fibre amplifier," Proc. SPIE 6453, 64530H-1-9 (2007).
[CrossRef]

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, "Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping," OFC 2005, paper OThC5.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, "Effect of heat and H2 gas on the photodarkening of Yb3+ fibers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, Technical Digest (Optical Society of America, Washington, DC, 2006), paper CTuQ5.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, "Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers," in Conf. Digest of CLEO Europe-EQEC 2007, CJ3-1-THU.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Photodarkening-induced excess loss spectra measured in the different experiments (losses are scaled with sample length). Noise between 850-1000 nm (due to Yb-absorption) has been removed from experiment #3.

Fig. 2.
Fig. 2.

Simulated inversion profiles for three different experimental configurations for a 20-µm-diameter LMA core. LP01-mode profile is calculated for a 60-mm-diameter fiber bend radius and was applied in calculation of inversion profiles of exp. #2 and #3.

Fig. 3.
Fig. 3.

Setup used in experiment #1. CF is a color filter (Schott BG40), 20/125 is a 20-µm-core, low-NA passive fiber (high index coating), 20/125DC is a double cladding (low index coating) matched passive, L is a microscope objective (60x), and CCD is a beam-imaging digital camera (Spiricon LSB-230).

Fig. 4.
Fig. 4.

(a) Near-field intensity profiles of pristine and photodarkened (5 minutes) fiber. (b) Intensity change profile with the inset graph showing the intensity change distribution.

Fig. 5.
Fig. 5.

Setup used in experiment #2. The fiber pigtail of a single-mode pump laser diode is spliced onto a matching 20-µm-core, low-NA passive fiber (high index coating) through a mode-converter. L is a microscope objective (60x).

Fig. 6.
Fig. 6.

(a) Near-field intensity profiles of pristine and photodarkened (15 minutes) fiber. (b) Intensity change profile with the inset graph showing the intensity change distribution.

Fig. 7.
Fig. 7.

Setup used in experiment #3. DF is a dichroic filter (HR @ 1030-1100 nm, HT @ 900-980 nm), L1 and L2 are aspheric lenses (f: 11 mm and 4.5 mm, respectively).

Fig. 8.
Fig. 8.

(a) Near-field intensity distributions of pristine and photodarkened (90 minutes) fiber. (b) Intensity change profile with the inset graph showing the intensity change distribution..

Metrics