Abstract

We experimentally demonstrated linewidth-tolerant 10-Gbit/s (2.5-Gsymbol/s) 16-quadrature amplitude modulation (QAM) by using a distributed-feedback laser diode (DFB-LD) with a linewidth of 30 MHz. Error-free operation, a bit-error rate (BER) of <10-9 was achieved in transmission over 120 km of standard single mode fiber (SSMF) without any dispersion compensation. The phase-noise canceling capability provided by a pilot-carrier and standard electronic pre-equalization to suppress inter-symbol interference (ISI) gave clear 16-QAM constellations and floor-less BER characteristics. We evaluated the BER characteristics by real-time measurement of six (three different thresholds for each I- and Q-component) symbol error rates (SERs) with simultaneous constellation observation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip and J. M. Kahn, "Carrier synchronization for 3- and 4-bit-per-symbol optical transmission," J. Lightwave Technol. 23, 4110-4124 (2005).
    [CrossRef]
  2. A. P. T. Lau and J. M. Kahn, "16-QAM signal design and detection in presence of nonlinear phase noise," in Proc. LEOS Summer Topical Meetings, Portland, USA, paper TuA4.4 (2007).
  3. M. Seimetz, "Performance of coherent optical square-16-QAM-systems based on IQ-transmitters and homodyne receivers with digital phase estimation," in Proc. Optical Fiber Communication Conference (OFC2006), Anaheim, USA, paper NWA4 (2006).
  4. M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, "64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection," Opt. Express 16, 829-840 (2008).
    [CrossRef] [PubMed]
  5. M. Seimetz, "Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation," in Proc. Optical Fiber Communication Conference (OFC2008), San Diego, USA, paper OTuM2 (2008).
  6. N. Kikuchi, "Intersymbol interference (ISI) suppression technique for optical binary and multilevel signal generation," J. Lightwave Technol. 25, 2060-2068 (2007).
    [CrossRef]
  7. C. R. Doerr, P. J. Winzer, L. Zhang, L. L. Buhl, and N. J. Sauer, "Monolithic InP 16-QAM modulator," in Proc. Optical Fiber Communication Conference (OFC2008), San Diego, USA, paper PDP20 (2008).
  8. T. Sakamoto, A. Chiba, and T. Kawanishi, "50-Gb/s 16 QAM by a quad-parallel Mach-Zehnder modulator," in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper PD2.8 (2007).
  9. M. Nakamura, Y. Kamio, and T. Miyazaki, "Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator" in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper 8.3.6 (2007).
  10. S. Betti, F. Curti, G. De Marchis, and E. Iannone, "Phase noise and polarization state insensitive optical coherent systems," J. Lightwave Technol. 8, 756-767 (1990).
    [CrossRef]
  11. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
    [CrossRef]
  12. K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
    [CrossRef]
  13. M. Nakamura, Y. Kamio, and T. Miyazaki, "PMD- and dispersion-tolerance of QPSK homodyne detection using a polarization-multiplexed pilot carrier," in Proc. European Conference on Optical Communication (ECOC2006), Cannes, France, paper Mo4.2.5 (2006).
    [CrossRef]
  14. G. P. Agrawal, Fiber-Optic Communication systems, Second Edition, (Wiley-Interscience, 1997) Chap. 6.

2008 (1)

2007 (1)

2006 (1)

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

2005 (2)

E. Ip and J. M. Kahn, "Carrier synchronization for 3- and 4-bit-per-symbol optical transmission," J. Lightwave Technol. 23, 4110-4124 (2005).
[CrossRef]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

1990 (1)

S. Betti, F. Curti, G. De Marchis, and E. Iannone, "Phase noise and polarization state insensitive optical coherent systems," J. Lightwave Technol. 8, 756-767 (1990).
[CrossRef]

Bayvel, P.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Betti, S.

S. Betti, F. Curti, G. De Marchis, and E. Iannone, "Phase noise and polarization state insensitive optical coherent systems," J. Lightwave Technol. 8, 756-767 (1990).
[CrossRef]

Curti, F.

S. Betti, F. Curti, G. De Marchis, and E. Iannone, "Phase noise and polarization state insensitive optical coherent systems," J. Lightwave Technol. 8, 756-767 (1990).
[CrossRef]

De Marchis, G.

S. Betti, F. Curti, G. De Marchis, and E. Iannone, "Phase noise and polarization state insensitive optical coherent systems," J. Lightwave Technol. 8, 756-767 (1990).
[CrossRef]

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Goto, H.

Hardcastle, I.

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Iannone, E.

S. Betti, F. Curti, G. De Marchis, and E. Iannone, "Phase noise and polarization state insensitive optical coherent systems," J. Lightwave Technol. 8, 756-767 (1990).
[CrossRef]

Ip, E.

Kahn, J. M.

Kasai, K.

Kikuchi, N.

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Nakazawa, M.

O???Sullivan, M.

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Roberts, K.

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Yoshida, M.

IEEE Photon. Technol. Lett. (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O�??Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (8)

M. Seimetz, "Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation," in Proc. Optical Fiber Communication Conference (OFC2008), San Diego, USA, paper OTuM2 (2008).

A. P. T. Lau and J. M. Kahn, "16-QAM signal design and detection in presence of nonlinear phase noise," in Proc. LEOS Summer Topical Meetings, Portland, USA, paper TuA4.4 (2007).

M. Seimetz, "Performance of coherent optical square-16-QAM-systems based on IQ-transmitters and homodyne receivers with digital phase estimation," in Proc. Optical Fiber Communication Conference (OFC2006), Anaheim, USA, paper NWA4 (2006).

C. R. Doerr, P. J. Winzer, L. Zhang, L. L. Buhl, and N. J. Sauer, "Monolithic InP 16-QAM modulator," in Proc. Optical Fiber Communication Conference (OFC2008), San Diego, USA, paper PDP20 (2008).

T. Sakamoto, A. Chiba, and T. Kawanishi, "50-Gb/s 16 QAM by a quad-parallel Mach-Zehnder modulator," in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper PD2.8 (2007).

M. Nakamura, Y. Kamio, and T. Miyazaki, "Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator" in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper 8.3.6 (2007).

M. Nakamura, Y. Kamio, and T. Miyazaki, "PMD- and dispersion-tolerance of QPSK homodyne detection using a polarization-multiplexed pilot carrier," in Proc. European Conference on Optical Communication (ECOC2006), Cannes, France, paper Mo4.2.5 (2006).
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication systems, Second Edition, (Wiley-Interscience, 1997) Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental setup for 10-Gbit/s (2.5-Gsymbol/s) 16-QAM self-homodyne transmission and (b) pilot-carrier vector modulator.

Fig. 2.
Fig. 2.

16-QAM constellation and threshold levels to characterize the SER performance.

Fig. 3.
Fig. 3.

Constellation and eye-diagrams of the received 10-Gbit/s 16-QAM signals using EC-LD (a), DFB-LD (b), and DFB-LD with 120-km SSMF transmission (c).

Fig. 4.
Fig. 4.

Optical spectrum for 10-Gbit/s 16-QAM optical signal using DFB-LD.

Fig. 5.
Fig. 5.

SER characteristics of the 10-Gbit/s 16-QAM signals using EC-LD (a), DFB-LD (b), and DFB-LD with 120-km SSMF transmission (c).

Fig. 6.
Fig. 6.

BER characteristics of the 10-Gbit/s 16-QAM signals using EC-LD, DFB-LD, and DFB-LD with 120-km SSMF transmission.

Metrics