Abstract

With miniaturized tube lenses and a micro-electro-mechanical system (MEMS) mirror, we constructed a miniaturized multiphoton microscope system. Through a two-dimensional asynchronous scanning of the MEMS mirror, 24Hz frame rate can be realized. With a high numerical aperture objective, sub-micron resolution can also be achieved at the same time.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
    [CrossRef] [PubMed]
  2. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
    [CrossRef] [PubMed]
  3. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, "Fiber-optic confocal microscope using a MEMS scanner and miniature objectives lens," Opt. Express 15, 9113-9122 (2007).
    [CrossRef] [PubMed]
  4. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microscope, " Opt. Lett. 30, 2272-2274 (2005).
    [CrossRef] [PubMed]
  5. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, " Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
    [CrossRef] [PubMed]
  6. J. C. Jung and M. J. Schnitzer,"Multiphoton endoscopy," Opt. Lett. 28, 9902-904 (2003).
  7. D. Bird and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28, 1552-1554 (2003).
    [CrossRef] [PubMed]
  8. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
    [CrossRef] [PubMed]
  9. R. M. Williams, W. R. Ziptel, and W. W. Webb, "Interpretating second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
    [CrossRef]
  10. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys. J. 91, 4665-4677 (2006).
    [CrossRef] [PubMed]
  11. L. Fu and M. Gu, " Polarization anisotropy in fiber-optic second harmonic generation microscopy," Opt. Express 16, 5000-5006 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (3)

2005 (2)

R. M. Williams, W. R. Ziptel, and W. W. Webb, "Interpretating second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microscope, " Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

J. C. Jung and M. J. Schnitzer,"Multiphoton endoscopy," Opt. Lett. 28, 9902-904 (2003).

D. Bird and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28, 1552-1554 (2003).
[CrossRef] [PubMed]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Anderson, E. P.

Barretto, R. P. J.

Becker, D. L.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys. J. 91, 4665-4677 (2006).
[CrossRef] [PubMed]

Bird, D.

Cocker, E. D.

Cranfield, C.

Dombeck, D. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Ekwobi, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys. J. 91, 4665-4677 (2006).
[CrossRef] [PubMed]

Flusberg, B. A.

Fu, L.

Göbel, W.

Gu, M.

Helmchen, F.

Jain, A.

Jung, J. C.

Kasischke, K. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Kerr, J. N. D.

Ko, T. H.

Lee, D.

Levene, M. J.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Molly, R. P.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Nimmerjahn, A.

Pierce, M. C.

Piyawattanametha, W.

Ra, H.

Richards-Kortum, R.

Schnitzer, M. J.

Shin, H. J.

Solgaard, O.

Theodossiou, T. A.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys. J. 91, 4665-4677 (2006).
[CrossRef] [PubMed]

Thrasivoulou, C.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys. J. 91, 4665-4677 (2006).
[CrossRef] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Ziptel, and W. W. Webb, "Interpretating second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Ziptel, and W. W. Webb, "Interpretating second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

Xie, H.

Ziptel, W. R.

R. M. Williams, W. R. Ziptel, and W. W. Webb, "Interpretating second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

Biophys. J. (2)

R. M. Williams, W. R. Ziptel, and W. W. Webb, "Interpretating second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections," Biophys. J. 91, 4665-4677 (2006).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molly, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Supplementary Material (1)

» Media 1: AVI (2203 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of our experimental setup. FPGA: Field Programmable Gate Array. PMT: photomultiplier tube.

Fig. 2.
Fig. 2.

Two-photon-excited fluorescent microscopic imaging of 15-µm fluorescent beads.

Fig. 3.
Fig. 3.

(a) Two-photon-excited fluorescence image of 1-µm fluorescent beads. (b) Intensity distribution of a fluorescent bead along a line crossing the peak intensity in Fig. 3(a).

Fig. 4.
Fig. 4.

(2.15 MB) The two-photon-excited fluorescence movie showing the Brownian motion of the 1-µm fluorescent beads. (10.5 MB version). These images were taken with a 24Hz frame rate and 512×512-pixel resolution. Image size: 76µm×70µm [Media 1]

Fig. 5.
Fig. 5.

Second harmonic generation image of a bovine tendon.

Metrics