Abstract

We demonstrate a fluorescence spectrometer that utilizes principles of Fourier transform spectroscopy to measure excitation emission matrices (EEM) rapidly and with high spectral resolution. For this EEM fluorometer, incoherent excitation light is first input into a differential-delay scanning Michelson interferometer. Light from the output port excites sample fluorescence. The fluorescence remitted from the sample is directed to a second Michelson interferometer, whose differential-delay scanning is synchronized with the first interferometer. The EEM is obtained by two-dimensional Fourier analysis of the detected signal from the output port of the second interferometer. EEM results from the system are verified by comparing with results from a standard spectrometer. The system provides a wide spectral range, adjustable spectral resolution, and fast EEM acquisition speed, which allows EEM’s to be acquired in 40 seconds at a spectral resolution of 81-cm-1.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, "Hyperspectral confocal microscope," Appl. Opt. 45, 6283-6291 (2006).
    [CrossRef] [PubMed]
  2. V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
    [CrossRef]
  3. T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003).
    [CrossRef] [PubMed]
  4. M. Gouzman, N. Lifshitz, S. Luryi, O. Semyonov, D. Gavrilov, and V. Kuzminskiy, "Excitation-emission fluorimeter based on linear interference filters," Appl. Opt. 43, 3066-3072 (2004).
    [CrossRef] [PubMed]
  5. S. J. Hart and R. D. JiJi, "Light emitting diode excitation emission matrix fluorescence spectroscopy," Analyst 127, 1693-1699 (2002).
    [CrossRef]
  6. M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
    [CrossRef]
  7. A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996).
    [CrossRef]
  8. C. D. Tran and R. J. Furlan, "Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses," Anal. Chem. 65, 1675-1681 (1993).
    [CrossRef] [PubMed]
  9. R. A. Zângaro, J. Landulfo Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. V. Dam, and M. S. Feld, "Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis," Appl. Opt. 35, 5211-5219 (1996).
    [CrossRef] [PubMed]
  10. A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
    [CrossRef]
  11. R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004).
    [CrossRef]
  12. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, "Spectral- and frequency-encoded fluorescence imaging," Opt. Lett. 30, 2760-2762 (2005).
    [CrossRef] [PubMed]
  13. L. Peng, J. T. Motz, R. W. Redmond, B. E. Bouma, and G. J. Tearney, "Fourier transform emission lifetime spectrometer," Opt. Lett. 32, 421-423 (2007).
    [CrossRef] [PubMed]
  14. L. Greengard and J.-Y. Lee, "Accelerating the Nonuniform Fast Fourier Transform," Siam Rev. 46, 443-454 (2004).
    [CrossRef]
  15. J. A. Gardecki and M. Maroncelli, "Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy," Appl. Spec. 52, 1179-1189 (1998).
    [CrossRef]
  16. J. R. Lakowicz, Principles of fluorescence spectroscopy, 2nd ed. (Kluwer Academic/Plenum Publishers, New York, 1999).
  17. G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources (Invited)," J. Opt. Soc. Am. B 24, 1771-1785 (2007).
    [CrossRef]
  18. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  19. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
    [CrossRef] [PubMed]

2007 (3)

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

L. Peng, J. T. Motz, R. W. Redmond, B. E. Bouma, and G. J. Tearney, "Fourier transform emission lifetime spectrometer," Opt. Lett. 32, 421-423 (2007).
[CrossRef] [PubMed]

G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources (Invited)," J. Opt. Soc. Am. B 24, 1771-1785 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (3)

L. Greengard and J.-Y. Lee, "Accelerating the Nonuniform Fast Fourier Transform," Siam Rev. 46, 443-454 (2004).
[CrossRef]

R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004).
[CrossRef]

M. Gouzman, N. Lifshitz, S. Luryi, O. Semyonov, D. Gavrilov, and V. Kuzminskiy, "Excitation-emission fluorimeter based on linear interference filters," Appl. Opt. 43, 3066-3072 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003).
[CrossRef] [PubMed]

2002 (2)

S. J. Hart and R. D. JiJi, "Light emitting diode excitation emission matrix fluorescence spectroscopy," Analyst 127, 1693-1699 (2002).
[CrossRef]

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

1999 (1)

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

1998 (1)

J. A. Gardecki and M. Maroncelli, "Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy," Appl. Spec. 52, 1179-1189 (1998).
[CrossRef]

1997 (1)

1996 (2)

A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996).
[CrossRef]

R. A. Zângaro, J. Landulfo Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. V. Dam, and M. S. Feld, "Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis," Appl. Opt. 35, 5211-5219 (1996).
[CrossRef] [PubMed]

1993 (1)

C. D. Tran and R. J. Furlan, "Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses," Anal. Chem. 65, 1675-1681 (1993).
[CrossRef] [PubMed]

Barnes, C. A.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Booksh, K. S.

A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996).
[CrossRef]

Bouma, B. E.

Chawla, M. K.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Coen, S.

Dam, J. V.

Dasari, R. R.

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

R. A. Zângaro, J. Landulfo Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. V. Dam, and M. S. Feld, "Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis," Appl. Opt. 35, 5211-5219 (1996).
[CrossRef] [PubMed]

Dudley, J. M.

Durkin, A.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Fan, J.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Feld, M. S.

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

R. A. Zângaro, J. Landulfo Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. V. Dam, and M. S. Feld, "Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis," Appl. Opt. 35, 5211-5219 (1996).
[CrossRef] [PubMed]

Fuchs, H.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Fujimoto, J. G.

Furlan, R. J.

C. D. Tran and R. J. Furlan, "Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses," Anal. Chem. 65, 1675-1681 (1993).
[CrossRef] [PubMed]

Gardecki, J. A.

J. A. Gardecki and M. Maroncelli, "Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy," Appl. Spec. 52, 1179-1189 (1998).
[CrossRef]

Gavrilov, D.

Genty, G.

Georgakoudi, I.

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

Gillenwater, A.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Gouzman, M.

Greengard, L.

L. Greengard and J.-Y. Lee, "Accelerating the Nonuniform Fast Fourier Transform," Siam Rev. 46, 443-454 (2004).
[CrossRef]

Guzowski, J. F.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Haaland, D. M.

Hart, S. J.

S. J. Hart and R. D. JiJi, "Light emitting diode excitation emission matrix fluorescence spectroscopy," Analyst 127, 1693-1699 (2002).
[CrossRef]

Heintzmann, R.

R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004).
[CrossRef]

Itzkan, I.

Jacob, R.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

JiJi, R. D.

S. J. Hart and R. D. JiJi, "Light emitting diode excitation emission matrix fluorescence spectroscopy," Analyst 127, 1693-1699 (2002).
[CrossRef]

Jones, H. D. T.

Jovin, T. M.

R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004).
[CrossRef]

Kemp, B.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Kuzminskiy, V.

Landulfo Silveira, J.

Lee, J.-Y.

L. Greengard and J.-Y. Lee, "Accelerating the Nonuniform Fast Fourier Transform," Siam Rev. 46, 443-454 (2004).
[CrossRef]

Lidke, K. A.

R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004).
[CrossRef]

Lifshitz, N.

Luryi, S.

Manoharan, R.

Maroncelli, M.

J. A. Gardecki and M. Maroncelli, "Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy," Appl. Spec. 52, 1179-1189 (1998).
[CrossRef]

McNaughtona, B. L.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Motz, J. T.

Müller, M. G.

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

Muroski, A. R.

A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996).
[CrossRef]

Myrick, M. L.

A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996).
[CrossRef]

Nieman, L. T.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Oh, W. Y.

Peng, L.

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003).
[CrossRef] [PubMed]

Redmond, R. W.

Richards-kortum, R.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003).
[CrossRef] [PubMed]

Roysame, B.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Semyonov, O.

Sinclair, M. B.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, "Hyperspectral confocal microscope," Appl. Opt. 45, 6283-6291 (2006).
[CrossRef] [PubMed]

Sutherland, V. L.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Tearney, G. J.

Timlin, J. A.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, "Hyperspectral confocal microscope," Appl. Opt. 45, 6283-6291 (2006).
[CrossRef] [PubMed]

Tran, C. D.

C. D. Tran and R. J. Furlan, "Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses," Anal. Chem. 65, 1675-1681 (1993).
[CrossRef] [PubMed]

Utzinger, U.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Vakoc, B. J.

Wax, A.

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

Worley, P. F.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

Yelin, D.

Yun, S. H.

Zângaro, R. A.

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003).
[CrossRef] [PubMed]

Zonios, G.

Zuluaga, A. F.

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

Anal. Chem. (2)

A. R. Muroski, K. S. Booksh, and M. L. Myrick, "Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction," Anal. Chem. 68, 3534-3538 (1996).
[CrossRef]

C. D. Tran and R. J. Furlan, "Spectrofluorometer Based on Acousto-Optic Tunable Filters for Rapid Scanning and Multicomponent Sample Analyses," Anal. Chem. 65, 1675-1681 (1993).
[CrossRef] [PubMed]

Analyst (1)

S. J. Hart and R. D. JiJi, "Light emitting diode excitation emission matrix fluorescence spectroscopy," Analyst 127, 1693-1699 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Spec. (1)

J. A. Gardecki and M. Maroncelli, "Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy," Appl. Spec. 52, 1179-1189 (1998).
[CrossRef]

Appll. Spectrosc. (1)

A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-kortum, "Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis," Appll. Spectrosc. 53, 302-311 (1999).
[CrossRef]

FEBS Letters (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Letters 546, 87 (2003).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysame, B. L. McNaughtona, M. B. Sinclair, and C. A. Barnes, "Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution," J. Neurosci. Methods 160, 144-148 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Exp. (1)

R. Heintzmann, K. A. Lidke, and T. M. Jovin, "Double-pass Fourier transform imaging spectroscopy," Opt. Exp. 12, 753-763 (2004).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Inst. (1)

M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, "A reflectance spectrofluorimeter for real-time spectral diagnosis of disease," Rev. Sci. Inst. 73, 3933-3937 (2002).
[CrossRef]

Siam Rev. (1)

L. Greengard and J.-Y. Lee, "Accelerating the Nonuniform Fast Fourier Transform," Siam Rev. 46, 443-454 (2004).
[CrossRef]

Other (1)

J. R. Lakowicz, Principles of fluorescence spectroscopy, 2nd ed. (Kluwer Academic/Plenum Publishers, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Fourier fluorescence excitation emission spectrometer. The system consisted of a broadband light source (Xe lamp) and two Michelson interferometers: the excitation interferometer (M1, M2 and BS1), and the emission interferometer (M2, M3 and BS2). The HeNe laser and the photodetector DET1 monitored the motion of the excitation interferometer’s scanning mirror. The green laser and the photodetector DET2 monitored the position of the emission interferometer. The Photomultiplier PMT2 detected the modulated emission power. PMT1 and PMT3 detected the zero differential delay for the excitation and emission interferometers respectively. SP: short pass filter; LP: long pass filter; BS: beam splitter; BP: beam pickup; DM: dichroic mirror.

Fig. 2.
Fig. 2.

(a) Corrected emission and excitation spectra measured by the Fourier spectrometer (dots) and a conventional spectrometer (solid lines). (b) Corrected EEM of 4-dicyanomethylene-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM), 2.5 µM in dimethyl sulfoxide (DMSO), measured by the Fourier EEM spectrometer The x-axis of the grayscale map represents excitation wavelengths. The y-axis represents emission wavelengths. Excitation light was cut-off by a 555 nm dichroic mirror. Emission light was filtered by a 568 long pass filter. The spectral resolution for this dataset was 81 cm-1. (c) Corrected EEM measured by a conventional fluorescent spectrometer (Jobin Yvon Fluoromax 3). The spectral resolution for this dataset was 5 nm. EEM intensities are displayed by a contour plot with a gray scale lookup table representing arbitrary units.

Fig. 3.
Fig. 3.

(a) EEM of Rhodamine 6G, 1.0 µM in DMSO; (b) EEM of a mixture of DCM (2.5 µM) and Rhodamine 6G (1.0 µM) in DMSO. The x-axis of the grayscale map represents excitation wavelengths. The y-axis represents emission wavelengths. Excitation light was cut-off by a 555 nm dichroic mirror. Emission light was filtered by a 568 long pass filter. EEM intensities are displayed by a contour plot with a gray scale lookup table representing arbitrary units.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P Illum ( DD 1 ) P 0 [ 1 + cos ( 2 π σ 1 DD 1 ) ] .
I Em ( DD 1 , σ 2 ) EEM ( σ 1 , σ 2 ) P 0 [ 1 + cos ( 2 π σ 1 DD 1 ) ] ,
P Em ( DD 1 , DD 2 )
EEM ( σ 1 , σ 2 ) P 0 [ 1 + cos ( 2 π σ 1 DD 1 ) ] { 1 + cos ( 2 π σ 2 DD 2 ) } d σ 2 ,
P Em ( DD 1 , DD 2 )
EEM ( σ 1 , σ 2 ) S 0 ( σ 1 ) [ 1 + cos ( 2 π σ 1 DD 1 ) ] { 1 + cos ( 2 π σ 2 DD 2 ) } d σ 1 d σ 2 .
I Em ( σ 1 , σ 2 ) = δ ( σ 1 ) δ ( σ 2 ) EEM ( σ 1 , σ 2 ) d σ 1 d σ 2 + δ ( σ 2 ) . EEM ( σ 1 , σ 2 ) s 0 ( σ 1 ) d σ 2 ,
+ δ ( σ 1 ) EEM ( σ 1 , σ 2 ) S 0 ( σ 1 ) d σ 1 + EEM ( σ 1 , σ 2 ) S 0 ( σ 1 ) + c . c .
δ ( σ ) = { 1 , σ = 0 0 , σ 0 .
DD 1 = 2 x 1 , DD 2 = 2 x 1 + 2 x 2 .
F [ P Em ( x 1 , x 2 ) ] I Em ( σ 1 , σ 1 + σ 2 ) .
EEM ( σ 1 , σ 2 ) = S Ex ( σ 1 ) S Em ( σ 2 ) ,

Metrics