Abstract

We report on a new method to form reconfigurable channel waveguides in lithium niobate crystals, based on a combination of low-dose O3+ ion implantation and selective white light illumination. The fabricated structures show low loss as well as rather high resistivity against optical erasure with red or infrared light, while at the same time reconfiguration of the structures remains possible using homogeneous white light illumination. The transmission properties of the channel waveguide modes can be well simulated numerically by the beam propagation method, which allows for the fabrication of tailored optical interconnections.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
    [CrossRef]
  2. J.-P. Liu, H.-Y. Lee, H.-F. Yau, Y.-Z. Chen, C.-C. Chang, and C. C. Sun, "One-beam recording in a LiNbO3 crystal," Opt. Lett. 30, 305-307 (2005).
    [CrossRef] [PubMed]
  3. Y. Guo, Y. Liao, L. Cao, G. Liu, Q. He, and G. Jin, "Improvement of photorefractive properties and holographic applications of lithium niobate crystal," Opt. Express 12, 5556-5561 (2004).
    [CrossRef] [PubMed]
  4. G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
    [CrossRef]
  5. P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
    [CrossRef]
  6. T. Song, S. M. Liu, R. Guo, Z. H. Liu, N. Zhu, and Y. M. Gao, "Observation of composite gap solitons in optically induced nonlinear lattices in LiNbO3:Fe crystal," Opt. Express 14, 1924-1932 (2006).
    [CrossRef] [PubMed]
  7. E. J. Murphy, Integrated Optical Circuits and Components: Design and applications (Marcel Dekker, New York, 1999).
  8. T. Jannson, "Information capacity of Bragg holograms in planar optics," J. Opt. Soc. Am. 71, 342-347 (1981).
    [CrossRef]
  9. D. J. Brady and D. Psaltis, "Holographic interconnections in photorefractive waveguides," Appl. Opt. 30, 2324-2333 (1991).
    [CrossRef] [PubMed]
  10. L. B. Aronson and L. Hesselink, "Photorefractive integrated-optical switch arrays in LiNbO3," Opt. Lett. 15, 30-32 (1990).
    [CrossRef] [PubMed]
  11. K. Itoh, O. Matoba, and Y. Ichioka, "Fabrication experiment of photorefractive three-dimensional waveguides in lithium niobate," Opt. Lett. 19, 652-654 (1994)
    [CrossRef] [PubMed]
  12. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006).
    [CrossRef] [PubMed]
  13. R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
    [CrossRef]
  14. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
    [CrossRef]
  15. Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett. 66, 1449-1451 (1995).
    [CrossRef]
  16. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994).
    [CrossRef]
  17. C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
    [CrossRef]
  18. Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
    [CrossRef]
  19. M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
    [CrossRef]
  20. Y. Lu, S. Liu, G. Zhang, R. Guo, N. Zhu, and L. Yang, "Waveguides and directional couplers induced by white-light photovoltaic dark spatial solitons," J. Opt. Soc. Am. B 21, 1674-1678 (2004).
    [CrossRef]
  21. Y. Gao, S. Liu, R. Guo, X. Zhang, and Y. Lu, "White-light photorefractive phase mask," Appl. Opt. 44, 1533-1537 (2005).
    [CrossRef] [PubMed]
  22. F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
    [CrossRef]
  23. F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
    [CrossRef]
  24. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
    [CrossRef]
  25. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  26. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007).
    [CrossRef] [PubMed]
  27. P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986).
    [CrossRef]
  28. J. E. Goell and R. D. Standly, "Sputtered glass waveguide for integrated optical circuits," Bell Syst. Technol. J. 48, 3445-3448 (1969).
  29. J. Shibayama, K. Matsubara, M. Sekiguchi, J. Yamauchi, and H. Nakano, "Efficient nonuniform schemes for paraxial and wide-angle finite-difference beam propagation methods," J. Lightwave Technol. 17, 677-683 (1999).
    [CrossRef]
  30. Rsoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com.
  31. K. Buse, J. Imbrock, E. Krätzig, and K. Peithmann, "Photorefractive effects in LiNbO3 and LiTaO3," in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. (Springer, New York, 2007).

2008 (2)

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

2007 (2)

2006 (4)

T. Song, S. M. Liu, R. Guo, Z. H. Liu, N. Zhu, and Y. M. Gao, "Observation of composite gap solitons in optically induced nonlinear lattices in LiNbO3:Fe crystal," Opt. Express 14, 1924-1932 (2006).
[CrossRef] [PubMed]

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006).
[CrossRef] [PubMed]

P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

2005 (3)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

J.-P. Liu, H.-Y. Lee, H.-F. Yau, Y.-Z. Chen, C.-C. Chang, and C. C. Sun, "One-beam recording in a LiNbO3 crystal," Opt. Lett. 30, 305-307 (2005).
[CrossRef] [PubMed]

Y. Gao, S. Liu, R. Guo, X. Zhang, and Y. Lu, "White-light photorefractive phase mask," Appl. Opt. 44, 1533-1537 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

2002 (2)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

1999 (1)

1998 (1)

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

1997 (1)

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

1995 (1)

Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett. 66, 1449-1451 (1995).
[CrossRef]

1994 (1)

1991 (1)

1990 (1)

1986 (1)

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986).
[CrossRef]

1981 (1)

1969 (1)

J. E. Goell and R. D. Standly, "Sputtered glass waveguide for integrated optical circuits," Bell Syst. Technol. J. 48, 3445-3448 (1969).

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Aronson, L. B.

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Brady, D. J.

Caballero, O.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Cambournac, C.

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

Cao, L.

Carrascosa, M.

Chandler, P. J.

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986).
[CrossRef]

Chang, C.-C.

Chauvet, M.

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Chen, F.

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Chen, Y.-Z.

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Couton, C.

C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Fazio, E.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Gao, Y.

Gao, Y. M.

García, G.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabanes, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabañes, A.

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Giust, R.

C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Goell, J. E.

J. E. Goell and R. D. Standly, "Sputtered glass waveguide for integrated optical circuits," Bell Syst. Technol. J. 48, 3445-3448 (1969).

Gorza, S.-P.

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

Guo, R.

Guo, Y.

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Haelterman, M.

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

He, Q.

Hesselink, L.

Ichioka, Y.

Itoh, K.

Jäger, R.

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

Jannson, T.

Jaque, D.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Jin, G.

Kip, D.

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986).
[CrossRef]

Lee, H.-Y.

Liao, Y.

Liu, G.

Liu, J.-P.

Liu, S.

Liu, S. M.

Liu, Z. H.

Lu, Y.

Ma, Y.

Maillotte, H.

C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Matoba, O.

Matsubara, K.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Méndez, A.

Mitchell, M.

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Nakano, H.

Olivares, J.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Psaltis, D.

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Segev, M.

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Sekiguchi, M.

Shandarov, V.

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

Shibayama, J.

Song, T.

Standly, R. D.

J. E. Goell and R. D. Standly, "Sputtered glass waveguide for integrated optical circuits," Bell Syst. Technol. J. 48, 3445-3448 (1969).

Sun, C. C.

Tan, Y.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

Tomita, Y.

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Wang, K. M.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Wang, L.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

Wang, M.

P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Wang, X. L.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Xu, H.

Xu, J.

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

Yamauchi, J.

Yang, D.

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006).
[CrossRef] [PubMed]

P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Yang, L.

Yau, H.-F.

Zhang, G.

Y. Lu, S. Liu, G. Zhang, R. Guo, N. Zhu, and L. Yang, "Waveguides and directional couplers induced by white-light photovoltaic dark spatial solitons," J. Opt. Soc. Am. B 21, 1674-1678 (2004).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

Zhang, P.

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006).
[CrossRef] [PubMed]

P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Zhang, X.

Y. Gao, S. Liu, R. Guo, X. Zhang, and Y. Lu, "White-light photorefractive phase mask," Appl. Opt. 44, 1533-1537 (2005).
[CrossRef] [PubMed]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

Zhao, J.

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006).
[CrossRef] [PubMed]

P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Zhu, N.

Appl. Opt. (3)

Appl. Phys. B (1)

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, "Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In,Fe," Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

R. Jäger, S.-P. Gorza, C. Cambournac, M. Haelterman, and M. Chauvet, "Sharp waveguide bends induced by spatial solitons," Appl. Phys. Lett. 88, 061117 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett. 66, 1449-1451 (1995).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabanes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Bell Syst. Technol. J. (1)

J. E. Goell and R. D. Standly, "Sputtered glass waveguide for integrated optical circuits," Bell Syst. Technol. J. 48, 3445-3448 (1969).

Electron. Lett. (1)

C. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

J. Appl. Phys. (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Tan, F. Chen, X. L. Wang, L. Wang, V. Shandarov, and D. Kip, "Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures," J. Phys. D 41, 102001 (2008).
[CrossRef]

Nature (1)

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Opt. Acta (1)

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986).
[CrossRef]

Opt. Eng. (1)

P. Zhang, D. Yang, J. Zhao, and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Other (4)

Rsoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com.

K. Buse, J. Imbrock, E. Krätzig, and K. Peithmann, "Photorefractive effects in LiNbO3 and LiTaO3," in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J.-P. Huignard, eds. (Springer, New York, 2007).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994).
[CrossRef]

E. J. Murphy, Integrated Optical Circuits and Components: Design and applications (Marcel Dekker, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Dark mode spectrum and (b) reconstructed n e profile of the O3+ implanted planar waveguide in Fe:LiNbO3. The substrate index n sub is marked for comparison. The inset in (b) shows the scattered light intensity spectrum extracted from the sample surface versus the propagation length in y-direction of the sample.

Fig. 2.
Fig. 2.

Schematic plot of white-light induced planar waveguides. The dashed circles show the position of the channel waveguides.

Fig. 3.
Fig. 3.

Microscopic images of (a) top view and (b) transverse cross sections of the sample.

Fig. 4.
Fig. 4.

3D plot of the 2D index profile of the white light induced channel waveguide on top of O3+ ion implanted planar waveguide.

Fig. 5.
Fig. 5.

Experimentally measured near-field intensity distribution of channel waveguide modes (a) TE00 and (c) TE10, and related numerically calculated modal profiles [(b) and (d)] using BeamPROP software. The used wavelength of both experiment and simulation is 632.8 nm.

Metrics