Abstract

We study dielectric/metal thin film multilayers designed for the coupling of dielectric waveguide modes and surface plasmons. The coupling as identified in calculated dispersion relations for extended multilayers is confirmed by measured angle-resolved reflectance data. By lateral structuring of the multilayers the mutual coupling of dielectric and plasmonic modes is directly observed by fluorescence based microscopy. For a light wavelength of 514nm we find a coupling length of 15µm. Our results highlight the potential of hybrid dielectric/metal waveguides for integrating surface plasmon based photonic circuitry or sensing elements into conventional optical devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, 1988).
  2. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006)
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photon. 1, 641-648 (2007).
    [CrossRef]
  5. J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
    [CrossRef]
  6. P. S. Davids, B. A. Block, and K. C. Cadien, "Surface plasmon polarization filtering in a single mode dielectric waveguide." Opt. Express 13, 7063-7069 (2005).
  7. N. A. Janunts and Kh. V. Nerkararyana, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
    [CrossRef]
  8. W. Karthe, R. Muller, Integrierte Optik (Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1991).
  9. T. Tamir, ed., Guided-Wave Optoelectronics (Springer, 1988).
    [CrossRef]
  10. P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291-294 (1969).
    [CrossRef]
  11. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  12. R. G. Hunsperger, Integrated Optics - Theory and Technology (Springer, 2002).
  13. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
    [CrossRef]
  14. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30, 1524 (2005).
    [CrossRef] [PubMed]
  15. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Dielectric optical elements for surface plasmons," Opt. Lett. 30, 893 (2005).
    [CrossRef] [PubMed]
  16. D. Pacifici, H. J. Lezec, and H. A. Atwater, "Plasmonic All-Optical Modulation of Subwavelength-Aperture Transmission," Nat. Photonics 1,402 (2007).
    [CrossRef]

2007

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photon. 1, 641-648 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, "Plasmonic All-Optical Modulation of Subwavelength-Aperture Transmission," Nat. Photonics 1,402 (2007).
[CrossRef]

2005

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

2001

N. A. Janunts and Kh. V. Nerkararyana, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

1997

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

1969

P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291-294 (1969).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "Plasmonic All-Optical Modulation of Subwavelength-Aperture Transmission," Nat. Photonics 1,402 (2007).
[CrossRef]

Aussenegg, F. R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Block, B. A.

Cadien, K. C.

Ctyroky, J.

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Davids, P. S.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

Drezet, A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Felidj, N.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photon. 1, 641-648 (2007).
[CrossRef]

Hohenau, A.

Homola, J.

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Hradilova, J.

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Janunts, N. A.

N. A. Janunts and Kh. V. Nerkararyana, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

Kolarova, P.

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Krenn, J. R.

Lal, S.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photon. 1, 641-648 (2007).
[CrossRef]

Lamprecht, B.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

Leitner, A.

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "Plasmonic All-Optical Modulation of Subwavelength-Aperture Transmission," Nat. Photonics 1,402 (2007).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photon. 1, 641-648 (2007).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291-294 (1969).
[CrossRef]

Nerkararyana, Kh. V.

N. A. Janunts and Kh. V. Nerkararyana, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "Plasmonic All-Optical Modulation of Subwavelength-Aperture Transmission," Nat. Photonics 1,402 (2007).
[CrossRef]

Salerno, M.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

Schider, G.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

Skalsky, M.

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Steinberger, B.

Stepanov, A. L.

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291-294 (1969).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291-294 (1969).
[CrossRef]

Appl. Phys. Lett.

N. A. Janunts and Kh. V. Nerkararyana, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291-294 (1969).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

Nat. Photonics

D. Pacifici, H. J. Lezec, and H. A. Atwater, "Plasmonic All-Optical Modulation of Subwavelength-Aperture Transmission," Nat. Photonics 1,402 (2007).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Nature Photon.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photon. 1, 641-648 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B

J. Homola, J. Ctyroky, M. Skalsky, J. Hradilova, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286-290 (1997).
[CrossRef]

Other

H. Raether, Surface Plasmons (Springer, 1988).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006)
[CrossRef]

D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

R. G. Hunsperger, Integrated Optics - Theory and Technology (Springer, 2002).

W. Karthe, R. Muller, Integrierte Optik (Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1991).

T. Tamir, ed., Guided-Wave Optoelectronics (Springer, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(Color online) Schematics of a metal-clad (a), a plasmonic (b) and a coupled metalclad/plasmonic waveguide (c). n and d denote the refractive index and thickness of the involved layers as explained in the text.

Fig. 2.
Fig. 2.

(Color online) Effective mode index N for the TM0, TM1, TM2 and TM3 modes as a function of the thickness of the SU8 layer df as depicted in Fig. 1(a) and for the TM0′ mode as a function of dc as depicted in Fig. 1(b), calculated for a wavelength of 514 nm. TM0 and TM0′ are SPP modes, TM1, TM2 and TM3 are dielectric modes. For coupling the TM0′ to the TM1 mode at an effective mode index of 1.54 the necessary values of df and dc can be read from the graph as 700 nm and 90 nm, respectively (dashed green lines).

Fig. 3.
Fig. 3.

(Color online) Calculated dispersion relations (a), propagation lengths L (1/e 2 of the intensity) (b) and magnetic field intensity profiles at a wavelength of 500 nm (c)–(e). Red and black lines plot the coupled modes of the layer system as depicted in (e), the full and dashed blue lines plot the uncoupled SPP and TM1 modes, as depicted in (c) and (d), respectively.

Fig. 4.
Fig. 4.

(Color online) Grey scale plot of the calculated reflectance against wavelength and effective mode index (a) of the layer system sketched in (b): Glass substrate/700 nm SU8/50nm Ag/85nm SiO 2 /100 nm Air/SF18 superstrate (glass prism)

Fig. 5.
Fig. 5.

(Color online) Experimental (a) and calculated angle resolved reflectance curves of the layer system defined in Fig. 4(b); φ is the angle of incidence inside the SF18 prism; for calculations the width of the air gap was set to 100 nm.

Fig. 6.
Fig. 6.

(Color online) Fluorescence microscope images for different excitation wavelengths ((a) 458 nm, (b) 488 nm, (c) 514 nm)) of the sample sketched in (e). Light is injected into the left end face (red arrow) and is guided to the edge of the metal film (blue arrow) which is the position from where the coupled waveguide system extends to the right. The red dots indicate the fluorescing dye molecules. The green arrows in (a)–(c) mark the intensity maxima. (b) and (c) share the same length bar with (a). (d) shows the coupling lengths ΔL as retrieved from the images (circles), compared with the according theoretical values (crosses).

Fig. 7.
Fig. 7.

(Color online) Fluorescence microscope images of two different samples, one designed for coupled the other one designed for non-coupled wave guiding as viewed from top and bottom ((a), (b) and (d), (e), respectively). (c) shows crosscuts through images (a) (blue line) and (b) (black line), (f) shows crosscuts through images (d) (blue line) and (e) (black line). Fluorescing molecules are deposited on top of the sample as well as dispersed in the SU8 layer. The insets sketch the paths of the optical power.

Fig. 8.
Fig. 8.

(Color online) Fluorescence microscope images (a)–(d) of samples with a geometry depicted in (e). The diameter of the silver disk is 75µm for (a) and (b) excited with TM and TE polarized light, respectively and 20µm for (c) and (d) again forTM and TE polarization. The blue arrows in (a) and (c) indicate the diameter of the disks, the red arrows in (e) the position and direction of the in coupled light.

Fig. 9.
Fig. 9.

(Color online) Propagation length L and coupling length ΔL of the coupled waveguide system for the coupling wavelengths 510 nm (a) and 750 nm (b). The values were calculated from dispersion diagrams corresponding to the curves shown in Fig. 3(a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N TM 0 = ε s ε Ag ε s + ε Ag = 1.73

Metrics