Abstract

A novel source of continuous-wave terahertz radiation based on difference frequency generation (DFG) in GaAs crystal is proposed. Phase matching is provided using integration of appropriate optical and terahertz waveguides based on dispersive properties of GaAs. The output frequency can be tuned between 0–3.5 THz by tuning the incident wavelengths in the range of 1.5–1.6 µm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, 97–105 (2007).
    [CrossRef]
  2. Y. J. Ding and J. B. Khurgin, “A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate,” Opt. Commun. 148, 105–109 (1998).
    [CrossRef]
  3. Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, no. 3, 705–720, (2007).
    [CrossRef]
  4. A. Yariv, Optical electronics in modern communications, Oxford Univ. Press, 5th Ed., (1997), Chapter 8.
  5. K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
    [CrossRef]
  6. A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).
  7. F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
    [CrossRef]
  8. S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
    [CrossRef]
  9. V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
    [CrossRef]
  10. J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
    [CrossRef]
  11. T. Baher-Jones, M. Hochberg, R. Soref, and A. Scherer, “Design of a tunable, room temprature, continuous-wave terahertz source and detector using silicon waveguides,” J. Opt. Soc. Am. B,  25, no. 2, 261–269, (2008).
    [CrossRef]
  12. M. R. Brozel and G. E. Stillman, Properties of gallium arsenide, 1996, IET, Chapter 5.
  13. M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.,  90, 061111–, (2007).
    [CrossRef]
  14. J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon.Technol. Lett.,  19, no. 24, (2007).
    [CrossRef]
  15. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Optics Express 14, 2263–2276, (2006).
    [CrossRef] [PubMed]
  16. U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
    [CrossRef]
  17. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, no. 6, 668–670, (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (7)

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, no. 6, 668–670, (2007).
[CrossRef] [PubMed]

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.,  90, 061111–, (2007).
[CrossRef]

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon.Technol. Lett.,  19, no. 24, (2007).
[CrossRef]

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, no. 3, 705–720, (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, 97–105 (2007).
[CrossRef]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

2006 (2)

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Optics Express 14, 2263–2276, (2006).
[CrossRef] [PubMed]

2003 (1)

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

1999 (1)

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

1998 (3)

Y. J. Ding and J. B. Khurgin, “A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate,” Opt. Commun. 148, 105–109 (1998).
[CrossRef]

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
[CrossRef]

Aitchison, J. S.

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

Aitchison, J.S.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Alton, J.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Arnold, J. M.

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

Baher-Jones, T.

Barbieri, S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Beere, A. E.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Berger, V.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

Berolo, E.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
[CrossRef]

Bravetti, P.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

Brozel, M. R.

M. R. Brozel and G. E. Stillman, Properties of gallium arsenide, 1996, IET, Chapter 5.

Bubke, K.

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

Bull, J. D.

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon.Technol. Lett.,  19, no. 24, (2007).
[CrossRef]

Darcie, T. E.

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon.Technol. Lett.,  19, no. 24, (2007).
[CrossRef]

De Rossi, A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Dhillon, S. S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Ding, Y. J.

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, no. 3, 705–720, (2007).
[CrossRef]

Y. J. Ding and J. B. Khurgin, “A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate,” Opt. Commun. 148, 105–109 (1998).
[CrossRef]

Ebrahimzadeh, M.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Fejer, M. M.

Fejer, M.M.

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Flore, A.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

Harris, J. S.

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Hochberg, M.

Hurlbut, W. C.

Hurlbut, W.C.

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Hutchings, D. C.

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

Jaeger, N. A. F.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
[CrossRef]

James, R.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
[CrossRef]

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, “A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate,” Opt. Commun. 148, 105–109 (1998).
[CrossRef]

Kimaru, T.

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

Kozlov, V.G.

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Kuo, P. S.

Kurz, H.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.,  90, 061111–, (2007).
[CrossRef]

Lee, H.K.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Lee, Y.-S.

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, no. 6, 668–670, (2007).
[CrossRef] [PubMed]

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Loyo-Maldonado, V.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Moutzouris, K.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Nagel, M.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.,  90, 061111–, (2007).
[CrossRef]

Nagle, J.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

Nishizawa, J.-I

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

Oyama, Y.

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

Peschel, U.

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

Rahmatian, F.

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
[CrossRef]

Rao, S.V.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Ritchie, D. A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Rosencher, E.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

Saito, K.

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

Scherer, A.

Sirtori, C.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Soref, R.

Stanely, C.R.

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

Stillman, G. E.

M. R. Brozel and G. E. Stillman, Properties of gallium arsenide, 1996, IET, Chapter 5.

Suto, K.

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

Tanabe, T.

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, 97–105 (2007).
[CrossRef]

Vodopyanov, K. L.

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, no. 6, 668–670, (2007).
[CrossRef] [PubMed]

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Optics Express 14, 2263–2276, (2006).
[CrossRef] [PubMed]

Vodopyanov, K.L.

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Wachter, M.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.,  90, 061111–, (2007).
[CrossRef]

Yariv, A.

A. Yariv, Optical electronics in modern communications, Oxford Univ. Press, 5th Ed., (1997), Chapter 8.

Yu, X.

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

Zhang, J.

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon.Technol. Lett.,  19, no. 24, (2007).
[CrossRef]

Appl. Phys. Lett. (2)

K.L. Vodopyanov, M.M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W.C. Hurlbut, and V.G. Kozlov, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.,  89, 141119–9, (2006).
[CrossRef]

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.,  90, 061111–, (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, no. 3, 705–720, (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-I Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimaru, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.,  19, no. 3, (2007).
[CrossRef]

IEEE Photon.Technol. Lett. (3)

V. Loyo-Maldonado, H.K. Lee, C.R. Stanely, S.V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J.S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon.Technol. Lett.,  15, no. 3, pp. 428–430, (2003).
[CrossRef]

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon.Technol. Lett.,  19, no. 24, (2007).
[CrossRef]

F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes,,” IEEE Photon.Technol. Lett. 10, no. 5,(1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  39, (1998).

Nature Photonics (1)

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. De Rossi, A. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nature Photonics,  1, (2007).
[CrossRef]

Nature Photonics, vol. (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, 97–105 (2007).
[CrossRef]

Opt. Commun. (1)

Y. J. Ding and J. B. Khurgin, “A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate,” Opt. Commun. 148, 105–109 (1998).
[CrossRef]

Opt. Lett. (1)

Optics Express (1)

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Optics Express 14, 2263–2276, (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A,  60, no. 6, 4918–4926, (1999).
[CrossRef]

Other (2)

M. R. Brozel and G. E. Stillman, Properties of gallium arsenide, 1996, IET, Chapter 5.

A. Yariv, Optical electronics in modern communications, Oxford Univ. Press, 5th Ed., (1997), Chapter 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The optical refractive index (solid line) and group index (dash-dot line) and the terahertz refractive index (dash line) of GaAs.

Fig. 2.
Fig. 2.

The proposed device which is an integration of a dielectric slab and a metallic slit waveguide (The drawing is not to scale; dimensions are specified in table 1).

Fig. 3.
Fig. 3.

Electric field distribution of (a) the optical mode, and (b) the terahertz mode.

Fig. 4.
Fig. 4.

The effective group index of the optical waveguide and the effective index of the terahertz waveguide. Horizontal dash lines show the range of optical group index for the wavelengths in between 1.5 and 1.6 µm which can be matched to a terahertz effective index up to 3.5 THz.

Fig. 5.
Fig. 5.

Normalized output power vs. index mismatch for different device lengths.

Tables (2)

Tables Icon

Table 1. Design parameters.

Tables Icon

Table 2. Parameters used in Eq. (5) for calculation of the output power at Ω THz =2π×2 THz, while optical wavelengths are about 1.55µm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ω THz = ω 1 ω 2 ,
k THz = k 1 k 2 ;
Ω THz k THz = ω 1 ω 2 k 1 k 2 .
Ω THz k THz = d ω optical d k optical .
P THz = 2 A THz eff ( A optical eff ) 2 ( d Γ ) 2 ( μ ε 0 ) 3 2 P 1 P 2 Ω THz 2 n 1 n 2 n THz ( e α THz 2 L 1 α THz 2 ) 2 ,
A i eff E i ( x , y ) 2 dxdy max ( E i ( x , y ) ) 2 ,

Metrics