Abstract

We report on the measurement of the longitudinal coherence of organic microcavity lasers based on a conjugated polymer. By using a modified Michelson interferometer configuration enabling single-shot measurements of the coherence length, the transition from spontaneous emission to lasing is investigated. The measured coherence length grows upon increasing the pumping fluence, saturating around 45 µm above threshold. At large fluences, possible thermal and photo-oxidation processes occurring in the gain medium limit the further increase of the coherence length. Our results are important for understanding lasing emission in organic microcavities and optimizing the device design and performances.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
    [CrossRef] [PubMed]
  2. F. De Martini and G. R. Jacobovitz, "Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity," Phys. Rev. Lett. 60, 1711-1714 (1988).
    [CrossRef] [PubMed]
  3. N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996).
    [CrossRef]
  4. S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
    [CrossRef] [PubMed]
  5. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  6. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
    [CrossRef]
  7. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
    [CrossRef] [PubMed]
  8. A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
    [CrossRef]
  9. I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007).
    [CrossRef] [PubMed]
  10. M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mater. 12, 1655-1668 (2000).
    [CrossRef]
  11. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
    [CrossRef]
  12. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
    [CrossRef] [PubMed]
  13. L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
    [CrossRef]
  14. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
    [CrossRef]
  15. L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
    [CrossRef]
  16. G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
    [CrossRef]
  17. V. M. Papadakis, A. Stassinopoulos, D. Anglos, S. H. Anastasiadis, E. P. Giannelis, and D. G. Papazoglou, "Single-shot temporal coherence measurements of random lasing media," J. Opt. Soc. Am. B 24, 31-36 (2007).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  19. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007).
    [CrossRef]
  20. For sake of comparison, we recall that the maximum coherence length here measured is an order of magnitude lower than the value reported in Ref. [16] for a phenyl-substituted poly-(p-phenylenevinylene) polymer placed in an external cavity. In that system, a higher Q-factor (~1500) was achieved, leading to a cavity photon lifetime around 0.5 ps and hence to a longer coherence length, since lc�??�?c.
  21. J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
    [CrossRef]

2007 (3)

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

V. M. Papadakis, A. Stassinopoulos, D. Anglos, S. H. Anastasiadis, E. P. Giannelis, and D. G. Papazoglou, "Single-shot temporal coherence measurements of random lasing media," J. Opt. Soc. Am. B 24, 31-36 (2007).
[CrossRef]

2006 (2)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

2005 (1)

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

2000 (1)

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mater. 12, 1655-1668 (2000).
[CrossRef]

1998 (2)

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

1996 (1)

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

1995 (1)

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

1988 (1)

F. De Martini and G. R. Jacobovitz, "Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity," Phys. Rev. Lett. 60, 1711-1714 (1988).
[CrossRef] [PubMed]

1987 (1)

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Anastasiadis, S. H.

Anderson, A.

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Anglos, D.

Arakawa, Y.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007).
[CrossRef]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Baldassarri Höger von Högersthal, G.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Benware, B.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Buttè, R.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Camposeo, A.

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

Carlin, J.-F.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Chilla, J. L. A.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Christmann, G.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Cingolani, R.

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

De Martini, F.

F. De Martini and G. R. Jacobovitz, "Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity," Phys. Rev. Lett. 60, 1711-1714 (1988).
[CrossRef] [PubMed]

Del Carro, P.

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Feld, S.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Feltin, E.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Giannelis, E. P.

Giessen, H.

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

Grandjean, N.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Greiner, A.

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

Grundy, A. J. D.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Haroche, S.

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

Heeger, A. J.

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mater. 12, 1655-1668 (2000).
[CrossRef]

Hinds, E. A.

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

Holmes, A. B.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Iwamoto, S.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007).
[CrossRef]

Jacobovitz, G. R.

F. De Martini and G. R. Jacobovitz, "Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity," Phys. Rev. Lett. 60, 1711-1714 (1988).
[CrossRef] [PubMed]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Jhe, W.

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Kavokin, A.V.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Kumagai, N.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007).
[CrossRef]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Lagoudakis, P. G.

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

Lanzani, G.

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

Leibenguth, R.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Longhi, S.

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

Mahrt, R. F.

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

McGehee, M. D.

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mater. 12, 1655-1668 (2000).
[CrossRef]

Mele, E.

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

Meschede, D.

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

Moi, L.

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

Nomura, M.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007).
[CrossRef]

Papadakis, V. M.

Papazoglou, D. G.

Persano, L.

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

Pisignano, D.

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1951.
[CrossRef] [PubMed]

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Rocca, J. J.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Samuel, I. D. W.

I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Skolnick, M. S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Stanko, P.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Stassinopoulos, A.

Szyma??ska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Turnbull, G. A.

I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

Virgili, T.

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

Watson, M. E.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Wegmann, G.

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

Whittaker, D. M.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

Wilmsen, C.

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

Zavelani-Rossi, M.

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

Adv. Mater. (1)

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mater. 12, 1655-1668 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

L. Persano, E. Mele, A. Camposeo, P. Del Carro, R. Cingolani, and D. Pisignano, "Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distribute Bragg reflectors," Chem. Phys. Lett. 411, 316-320 (2005).
[CrossRef]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

J. L. A. Chilla, B. Benware, M. E. Watson, P. Stanko, J. J. Rocca, C. Wilmsen, S. Feld, and R. Leibenguth, "Coherence of VCSEL�??s for holographic interconnects," IEEE Photon. Technol. Lett. 7, 449-451 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (4)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, P. L. Burns, R. H. Friend, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity," Nature 395, 53-55 (1998).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma�?ska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of excitons polariton," Nature 443, 409-414 (2006).
[CrossRef] [PubMed]

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Opt. Express (1)

Org. Electron. (1)

A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, "Polarization splitting in organic-based microcavities working in the strong coupling regime," Org. Electron. 8, 114-119 (2007).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: Gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and S. Haroche, "Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space," Phys. Rev. Lett. 58, 666-669 (1987).
[CrossRef] [PubMed]

F. De Martini and G. R. Jacobovitz, "Anomalous spontaneous-stimulated decay phase transition and zero-threshold laser action in a microscopic cavity," Phys. Rev. Lett. 60, 1711-1714 (1988).
[CrossRef] [PubMed]

Other (6)

S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Buttè, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-temperature polariton lasing in semiconductor microcavities," Phys. Rev. Lett. 98, Art. N. 126405 (2007).
[CrossRef] [PubMed]

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, "Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers," Appl. Phys. Lett. 89, Art. N. 121111 (2006).
[CrossRef]

L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, Art. N. 121110 (2006).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, Art. N. 195313 (2007).
[CrossRef]

For sake of comparison, we recall that the maximum coherence length here measured is an order of magnitude lower than the value reported in Ref. [16] for a phenyl-substituted poly-(p-phenylenevinylene) polymer placed in an external cavity. In that system, a higher Q-factor (~1500) was achieved, leading to a cavity photon lifetime around 0.5 ps and hence to a longer coherence length, since lc�??�?c.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme of the setup employed for measuring lc . The MC devices are pumped by a ns Nd:YAG laser (3rd harmonic), which is focused by a lens (L1) of focal length, f=30 mm, onto a spot of about 0.4 mm diameter on the sample. The MC emission is collected and collimated by a 4× objective (OBJ). A beam-splitter (BS) directs part of the collimated beam through a lens (L2) into an optical fiber (FBR) connected to a spectrometer. The beam transmitted by BS is sent to the interferometer, and the fringes pattern is imaged through a lens (L3, f=78 mm) on an intensified CDD camera. A long-pass filter (FLT) is used to cut the excitation light. Glass plates (GPs) are used for phase shifting part of the beam traveling along the interferometer and reflecting on the M1 and M2 mirrors.

Fig. 2.
Fig. 2.

(a) Interference pattern from the organic-based MCs (excitation fluence=1.2 mJ/cm2) as captured by the ICCD detector. The image consists of two parts: the upper part (ii) corresponds to light that passed through tilted GPs, and compared to the lower part (i), corresponds to an OPD increased by ~16 µm. (b) Measured degree of coherence γ(τ) as a function of the optical path difference. The γ(τ) values corresponding to parts (i) and (ii) of Fig. 2a overlap in the OPD interval of 16–24 µm.

Fig. 3.
Fig. 3.

(a) Normalized output intensity vs. excitation fluence. The output intensities are normalized to the maximum measured intensity value. The continuous and dashed black lines are linear fits to the data in the excitation fluence intervals 0.2–0.6 mJ/cm2, and 0.6–1.2 mJ/cm2, corresponding to MC emission below and above the lasing threshold, respectively. Inset: Laser emission spectra acquired at different pump fluence values: Eexc =0.3 mJ/cm2 (green dashed line), Eexc =0.6 mJ/cm2 (red continuous line) and Eexc =1.2 mJ/cm2 (blue dotted line), and normalized to their maximum heights. (b) Measured coherence length, lc (full red circles) of the organic laser devices, and coherence length estimated by the ratio, λL 2λ (open green squares) vs. excitation fluence. The dotted and dashed lines are guides to the eyes. The error bars represent the standard deviation of the measured quantities from shot to shot for a set of at least 5 consecutive laser shots. The measured lc of the reference polymer film (full blue diamonds) is also displayed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ ( τ ) = I ( τ ) I 1 ( τ ) I 2 ( τ ) 2 I 1 ( τ ) I 2 ( τ )

Metrics