Abstract

We demonstrate a technique for generating large, all-optical delays while simultaneously minimizing pulse distortion by using temporal phase conjugation via four-wave mixing in Si nanowaveguides. Using this scheme, we achieve continuously tunable delays over a range of 243 ns for 10 Gb/s NRZ data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Dhodhi, S. Tariq, and K. A. Saleh, "Bottlenecks in next generation DWDM-based optical networks," Comput. Commun. 24, 1726-1733 (2001).
    [CrossRef]
  2. M. Saruwatari, "All-optical signal processing for Terabit/Second Optical Transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
    [CrossRef]
  3. S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic internet," J. Lightwave Technol. 24, 4468-4492 (2006).
    [CrossRef]
  4. E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005).
    [CrossRef] [PubMed]
  5. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
    [CrossRef]
  6. G. N. Pearson, K. D. Ridley, and D. V. Willetts, "Chirp-pulse-compression three dimensional lidar imager with fiber optics," Appl. Opt. 44, 257-265 (2005).
    [CrossRef] [PubMed]
  7. Y. Han and B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightwave Technol. 21, 3085-3103 (2003).
    [CrossRef]
  8. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).
  9. R. W. Boyd and D. J. Gauthier, "�??Slow�?? and �??fast�?? light," Progress in Optics 43, edited by E. Wolf (Elsevier, Amsterdam, 2002), Chap. 6, p. 497-530.
    [CrossRef]
  10. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Opt. Photonics News 17, 18-22 (2006).
    [CrossRef]
  11. M. Burzio, P. Cinato, R. Finotti, P. Gambini, M. Puleo, E. Vezzoni, and L. Zucchelli, "Optical cell synchronization in an ATM optical switch," in Proc. ECOC �??94, Florence, Italy, 2, 581-584 (1994).
  12. L. Zucchelli, M. Burzio, and P. Gambini, "New solutions for optical packet delineation and synchronization in optical packet switched networks," in Proc. ECOC �??96, Oslo, Norway, 3, 301-304 (1996).
  13. K. Shimizu, G. Kalogerakis, K. Wong, M. Marhic, and L. Kazovsky, "Timing jitter and amplitude noise reduction by a chirped pulsed-pump fiber OPA," in Proc. OFC �??03, Anaheim, USA, 1, 197-198 (2003).
  14. J. van Howe and C. Xu, "Ultrafast optical delay line using soliton propagation between a time-prism pair," Opt. Express 13, 1138-1143 (2005).
    [CrossRef] [PubMed]
  15. S. Oda and A. Maruta, "All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation," Opt. Express 14, 7895-7902 (2006).
    [CrossRef] [PubMed]
  16. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
    [CrossRef]
  17. L. C. Christen, I. Fazal, O. Yilmaz, X. Wu, S. R. Nuccio, A. E. Willner, C. Langrock, and M. Fejer, "Tunable 105-ns optical delay for 80-Gb/s RZ-DQPSK, 40-Gbit/s RZ-DPSK, and 40-Gbit/s RZ-OOK signals using wavelength conversion and chromatic dispersion," Optical Fiber Communication Conference, paper OTuD1 (2008).
  18. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  19. J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson, and S. Radic, "12.47 ns continuously-tunable two-pump parametric delay," European Conference on Optical Communications, paper Th4.4.3 (2006).
  20. M. P. Fok and C. Shu, "Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber and group velocity dispersion," J. Lightwave Technol. 26, 499-504 (2008).
    [CrossRef]
  21. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Opt. Express 14, 12022-12027 (2006).
    [CrossRef] [PubMed]
  22. Z. Hu and D. J. Blumenthal, "SPM-based 2R regenerative 10Gbps optically linearly controlled delay line with 0ps to 170ps tuning range," in Proc. OFC �??07, Anaheim, USA, OME4 (2007).
  23. Y. Okawachi, R. Salem, and A. L. Gaeta, "Continuous tunable delays at 10-Gb/s data rates using self-phase modulation and dispersion," J. Lightwave Technol. 25, 3710-3715 (2007).
    [CrossRef]
  24. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
    [CrossRef]
  25. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
    [CrossRef] [PubMed]
  26. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
    [CrossRef] [PubMed]
  27. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Opt. Lett. 4, 52-54 (1979).
    [CrossRef] [PubMed]
  28. S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 1989).
  30. M. Tsang and D. Psaltis, "Dispersion and nonlinearity compensation by spectral phase conjugation," Opt. Lett. 28, 1558-1560 (2003).
    [CrossRef] [PubMed]
  31. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley Interscience, New York, 2002).
    [CrossRef]
  32. M. A. Foster, A. C. Turner, R. Salem, D. F. Geraghty, M. Lipson, and A. L. Gaeta (in preparation).

2008 (1)

2007 (4)

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Y. Okawachi, R. Salem, and A. L. Gaeta, "Continuous tunable delays at 10-Gb/s data rates using self-phase modulation and dispersion," J. Lightwave Technol. 25, 3710-3715 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef]

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

2006 (6)

2005 (4)

2003 (2)

2001 (1)

M. K. Dhodhi, S. Tariq, and K. A. Saleh, "Bottlenecks in next generation DWDM-based optical networks," Comput. Commun. 24, 1726-1733 (2001).
[CrossRef]

2000 (1)

M. Saruwatari, "All-optical signal processing for Terabit/Second Optical Transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

1979 (1)

Ayotte, S.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Opt. Photonics News 17, 18-22 (2006).
[CrossRef]

Choi, E.

Cohen, O.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Dhodhi, M. K.

M. K. Dhodhi, S. Tariq, and K. A. Saleh, "Bottlenecks in next generation DWDM-based optical networks," Comput. Commun. 24, 1726-1733 (2001).
[CrossRef]

Fejer, M. M.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Fekete, D.

Fok, M. P.

Foster, M. A.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Gaeta, A. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Gaeta, A. L.

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Opt. Photonics News 17, 18-22 (2006).
[CrossRef]

Han, Y.

Jalali, B.

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Lee, B. H.

Lipson, M.

Manolatou, C.

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Maruta, A.

Mudhana, G.

Na, J. H.

Oda, S.

Okawachi, Y.

Paniccia, M. J.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

Pearson, G. N.

Pepper, D. M.

Psaltis, D.

Ridley, K. D.

Rong, H.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Ryu, Y.

Saleh, K. A.

M. K. Dhodhi, S. Tariq, and K. A. Saleh, "Bottlenecks in next generation DWDM-based optical networks," Comput. Commun. 24, 1726-1733 (2001).
[CrossRef]

Salem, R.

Saruwatari, M.

M. Saruwatari, "All-optical signal processing for Terabit/Second Optical Transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Opt. Express 14, 12022-12027 (2006).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Shu, C.

Tariq, S.

M. K. Dhodhi, S. Tariq, and K. A. Saleh, "Bottlenecks in next generation DWDM-based optical networks," Comput. Commun. 24, 1726-1733 (2001).
[CrossRef]

Tsang, M.

Turner, A. C.

van Howe, J.

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Willetts, D. V.

Willner, A. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Xu, C.

Xu, S.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Yariv, A.

Yoo, S. J. B.

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Appl. Opt. (1)

Comput. Commun. (1)

M. K. Dhodhi, S. Tariq, and K. A. Saleh, "Bottlenecks in next generation DWDM-based optical networks," Comput. Commun. 24, 1726-1733 (2001).
[CrossRef]

Electron. Lett. (1)

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Saruwatari, "All-optical signal processing for Terabit/Second Optical Transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

J. Lightwave Technol. (4)

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Opt. Express 14, 12022-12027 (2006).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

E. Choi, J. H. Na, Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005).
[CrossRef] [PubMed]

J. van Howe and C. Xu, "Ultrafast optical delay line using soliton propagation between a time-prism pair," Opt. Express 13, 1138-1143 (2005).
[CrossRef] [PubMed]

S. Oda and A. Maruta, "All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation," Opt. Express 14, 7895-7902 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Opt. Photonics News 17, 18-22 (2006).
[CrossRef]

Photon. Technol. Lett. (2)

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. E. Gaeta, "44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator," IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Other (11)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).

R. W. Boyd and D. J. Gauthier, "�??Slow�?? and �??fast�?? light," Progress in Optics 43, edited by E. Wolf (Elsevier, Amsterdam, 2002), Chap. 6, p. 497-530.
[CrossRef]

L. C. Christen, I. Fazal, O. Yilmaz, X. Wu, S. R. Nuccio, A. E. Willner, C. Langrock, and M. Fejer, "Tunable 105-ns optical delay for 80-Gb/s RZ-DQPSK, 40-Gbit/s RZ-DPSK, and 40-Gbit/s RZ-OOK signals using wavelength conversion and chromatic dispersion," Optical Fiber Communication Conference, paper OTuD1 (2008).

M. Burzio, P. Cinato, R. Finotti, P. Gambini, M. Puleo, E. Vezzoni, and L. Zucchelli, "Optical cell synchronization in an ATM optical switch," in Proc. ECOC �??94, Florence, Italy, 2, 581-584 (1994).

L. Zucchelli, M. Burzio, and P. Gambini, "New solutions for optical packet delineation and synchronization in optical packet switched networks," in Proc. ECOC �??96, Oslo, Norway, 3, 301-304 (1996).

K. Shimizu, G. Kalogerakis, K. Wong, M. Marhic, and L. Kazovsky, "Timing jitter and amplitude noise reduction by a chirped pulsed-pump fiber OPA," in Proc. OFC �??03, Anaheim, USA, 1, 197-198 (2003).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley Interscience, New York, 2002).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, D. F. Geraghty, M. Lipson, and A. L. Gaeta (in preparation).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 1989).

J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson, and S. Radic, "12.47 ns continuously-tunable two-pump parametric delay," European Conference on Optical Communications, paper Th4.4.3 (2006).

Z. Hu and D. J. Blumenthal, "SPM-based 2R regenerative 10Gbps optically linearly controlled delay line with 0ps to 170ps tuning range," in Proc. OFC �??07, Anaheim, USA, OME4 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Delay generator using wavelength conversion and temporal phase conjugation via FWM and two dispersion links. The FWM stage acts both as a wavelength converter and a phase conjugator.

Fig. 2.
Fig. 2.

Maximum delay (left axis) and the magnitude of the allowable dispersion (right axis) as a function of input data rate. We assume RZ pulses with a 33% fill-factor as our input and a wavelength conversion bandwidth of 70 nm. The dashed red line shows the achievable delay if TOD compensation is not performed, and the solid blue line shows achievable delay without residual second-order dispersion and TOD compensation.

Fig. 3.
Fig. 3.

(a) Experimental setup for delay scheme based on wavelength conversion and phase conjugation. (b) Four-wave mixing spectrum from the silicon waveguide.

Fig. 4.
Fig. 4.

Measured delay as a function of the converted wavelength using a total dispersion of -2600 ps/nm for the set-up shown in Fig. 4(a).

Fig. 5.
Fig. 5.

Experimental results for the delay scheme based on wavelength conversion and phase conjugation. Traces represent idler wavelengths of 1555 nm, 1565 nm, and 1575 nm.

Fig. 6.
Fig. 6.

Measured delay as a function of the converted wavelength using a DCF with a total dispersion of -3600 ps/nm and implementing the double-pass scheme with FWM phase conjugation.

Fig. 7.
Fig. 7.

Eye diagrams of (a) the input, (b) after the first DCF, and (c) the output through the delay generator.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A z + i β 2 2 2 A T 2 β 3 6 3 A T 3 = 0 .
A * z - i β 2 2 2 A * T 2 β 3 6 3 A * T 3 = 0 .
σ 2 σ 0 2 = 1 + ( β 2 R L 4 σ 0 2 ) 2 + ( β 3 L 4 2 σ 0 3 ) 2 ,
σ 0 = T FWHM 2 ( 2 ln 2 ) 1 2 .
4 B σ 1 ,

Metrics