Abstract

We propose a new design of optical nanoantennas and numerically study their optical properties. The nanoantennas are composed of two cylindrical metal nanorods stacked vertically with a circular dielectric disk spacer. Simulation results show that when the dielectric disk is less than 5nm in thickness, such nanoantennas exhibit two types of resonances: one corresponding to antenna resonance, the other corresponding to cavity resonances. The antenna resonance generates a peak in scattering spectra, while the cavity resonances lead to multiple dips in the scattering spectra. The cavity resonant frequency can be tuned by varying the size of the dielectric disk. The local field enhancement inside the cavity is maximized when the diameter of the dielectric disk is roughly half that of the rod and when the cavity and antenna resonant frequencies coincide with each other. This new nanoantenna promises applications in single molecule surface enhanced Raman spectroscopy (SERS) owing to its high local field enhancements and large scale manufacturability.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region

Zhengqing Qi, Jie Yao, Liangliang Zhao, Yiping Cui, and Changgui Lu
Photon. Res. 3(6) 313-316 (2015)

Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas

Zih-Ying Yang and Kuo-Ping Chen
Opt. Express 22(11) 12737-12749 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguide,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B-Lasers and Optics 86, 7–17 (2007).
    [Crossref]
  3. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
    [Crossref] [PubMed]
  4. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phy. Rev. E62, 4318–4324 (2000).
    [Crossref]
  5. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
    [Crossref]
  6. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
    [Crossref] [PubMed]
  7. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
    [Crossref] [PubMed]
  8. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, (Springer, Berlin Heidelberg, 2000).
  9. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [Crossref] [PubMed]
  10. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
    [Crossref] [PubMed]
  11. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D-Appl. Phys. 41, 013001 (2008).
    [Crossref]
  12. M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett.26, 123 (1974).
    [Crossref]
  13. M. Moskovits, “Surface Enhanced Raman Spectroscopy,” Rev. of Mod. Phys. 57, 783–826 (1985).
    [Crossref]
  14. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  15. S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref] [PubMed]
  16. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
    [Crossref]
  17. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
    [Crossref] [PubMed]
  18. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
    [Crossref]
  19. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  20. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
    [Crossref]
  21. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
    [Crossref]
  22. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [Crossref]
  23. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [Crossref]
  24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
  25. K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
    [Crossref]
  26. L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
    [Crossref]
  27. K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
    [Crossref] [PubMed]
  28. W. Gasser, Y. Uchida, and M. Matsumura, “Quasi-monolayer deposition of silicon dioxide,” Thin Solid Films 250, 213–218 (1994).
    [Crossref]
  29. J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
    [Crossref]
  30. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
    [Crossref] [PubMed]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  32. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B. 75, 035411 (2007).
    [Crossref]
  33. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nanoantennas and resonators,” Opt. Express 15, 10869–10877 (2007).
    [Crossref] [PubMed]
  34. N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
    [Crossref] [PubMed]
  35. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
    [Crossref] [PubMed]
  36. E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

2008 (2)

2007 (5)

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B-Lasers and Optics 86, 7–17 (2007).
[Crossref]

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B. 75, 035411 (2007).
[Crossref]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nanoantennas and resonators,” Opt. Express 15, 10869–10877 (2007).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref] [PubMed]

2006 (6)

E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[Crossref]

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
[Crossref]

2005 (7)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[Crossref] [PubMed]

2004 (3)

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguide,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

2003 (2)

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[Crossref]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

1999 (2)

J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
[Crossref]

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

1994 (1)

W. Gasser, Y. Uchida, and M. Matsumura, “Quasi-monolayer deposition of silicon dioxide,” Thin Solid Films 250, 213–218 (1994).
[Crossref]

1985 (1)

M. Moskovits, “Surface Enhanced Raman Spectroscopy,” Rev. of Mod. Phys. 57, 783–826 (1985).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Aizpurua, J.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phy. Rev. E62, 4318–4324 (2000).
[Crossref]

Alaverdyan, Y.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

Alu, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Apell, P.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phy. Rev. E62, 4318–4324 (2000).
[Crossref]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Atkinson, A.

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

Bjerneld, E. J.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Borjesson, L.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[Crossref]

Bozhevolnyi, S. I.

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[Crossref]

C., E.

E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
[Crossref]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Durant, S.

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Emery, S. R.

S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

Eurenius, L.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Fleischman, M.

M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett.26, 123 (1974).
[Crossref]

Fort, E.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D-Appl. Phys. 41, 013001 (2008).
[Crossref]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).

Galloway, C.

E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

Gasser, W.

W. Gasser, Y. Uchida, and M. Matsumura, “Quasi-monolayer deposition of silicon dioxide,” Thin Solid Films 250, 213–218 (1994).
[Crossref]

George, S. M.

J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B-Lasers and Optics 86, 7–17 (2007).
[Crossref]

Gresillon, S.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D-Appl. Phys. 41, 013001 (2008).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett.26, 123 (1974).
[Crossref]

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kall, M.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phy. Rev. E62, 4318–4324 (2000).
[Crossref]

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Klaus, J. W.

J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
[Crossref]

Kuipers, L.

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B. 75, 035411 (2007).
[Crossref]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref] [PubMed]

Le Ru,

E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[Crossref] [PubMed]

Maillard, M.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[Crossref]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Matsumura, M.

W. Gasser, Y. Uchida, and M. Matsumura, “Quasi-monolayer deposition of silicon dioxide,” Thin Solid Films 250, 213–218 (1994).
[Crossref]

McQuillan, A. J.

M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett.26, 123 (1974).
[Crossref]

Mirkin, C. A.

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B. 75, 035411 (2007).
[Crossref]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).

Moskovits, M.

M. Moskovits, “Surface Enhanced Raman Spectroscopy,” Rev. of Mod. Phys. 57, 783–826 (1985).
[Crossref]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Nie, S. M.

S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Olsson, E.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

Ott, A. W.

J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
[Crossref]

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

Qin, L. D.

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Schatz, G. C.

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Schuck, P. J.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Sepulveda, B.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, (Springer, Berlin Heidelberg, 2000).

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Sneh, O.

J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
[Crossref]

Søndergaard, T.

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Steele, J. M.

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguide,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Su, K. H.

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[Crossref]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Sun, C.

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).

Uchida, Y.

W. Gasser, Y. Uchida, and M. Matsumura, “Quasi-monolayer deposition of silicon dioxide,” Thin Solid Films 250, 213–218 (1994).
[Crossref]

Verhagen, E.

Vernon, K. C.

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B-Lasers and Optics 86, 7–17 (2007).
[Crossref]

Vlasko-Vlasov, V. K.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Wei, Q. H.

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[Crossref]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[Crossref] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Welp, U.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Xiong, Y.

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

Xu, H. X.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phy. Rev. E62, 4318–4324 (2000).
[Crossref]

Xue, C.

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Zhang, X.

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[Crossref]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[Crossref] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zou, S. L.

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[Crossref] [PubMed]

Appl. Phys. B-Lasers and Optics (1)

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B-Lasers and Optics 86, 7–17 (2007).
[Crossref]

Appl. Phys. Lett. (2)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093102 (2006).
[Crossref]

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110, 3964–3968 (2006).
[Crossref] [PubMed]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[Crossref]

J. Phys. D-Appl. Phys. (1)

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D-Appl. Phys. 41, 013001 (2008).
[Crossref]

Nano Lett. (5)

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[Crossref] [PubMed]

Nat. Phys. (1)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

E. C., Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8, 3083–3087 (2006).

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Phys. Rev. B. (1)

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B. 75, 035411 (2007).
[Crossref]

Phys. Rev. Lett. (6)

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguide,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”. Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

Proc. of the Nat. Acad. Sci. USA (1)

L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots”. Proc. of the Nat. Acad. Sci. USA 103, 13300–13303 (2006).
[Crossref]

Rev. of Mod. Phys. (1)

M. Moskovits, “Surface Enhanced Raman Spectroscopy,” Rev. of Mod. Phys. 57, 783–826 (1985).
[Crossref]

Science (3)

S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref] [PubMed]

Surf. Rev. Lett. (1)

J. W. Klaus, O. Sneh, A. W. Ott, and S. M. George, “Atomic layer deposition of SiO2 using catalyzed and uncatalyzed self-limiting surface reactions,” Surf. Rev. Lett. 6, 435–448 (1999).
[Crossref]

Thin Solid Films (1)

W. Gasser, Y. Uchida, and M. Matsumura, “Quasi-monolayer deposition of silicon dioxide,” Thin Solid Films 250, 213–218 (1994).
[Crossref]

Other (3)

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, (Springer, Berlin Heidelberg, 2000).

M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett.26, 123 (1974).
[Crossref]

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phy. Rev. E62, 4318–4324 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic side view (left) and top view (right) of the metal-dielectric-metal nanoantenna. The wave vector k of the incident light is indicated by the arrow; the polarization is along the nanoparticle axis. The blue spot indicates the probe position where the local field spectra are calculated.

Fig. 2.
Fig. 2.

Local electrical field spectra (a–d) and far field scattering spectra (e–h) for the SiO2 disk diameters at 20nm (a, e), 30nm (b, f), 40nm (c, g) and 60nm (d, h).

Fig. 3.
Fig. 3.

(a). Simulated (symbols) and calculated (lines) cavity resonant wavelength as a function of the SiO2 disk thickness for different SiO2 disk diameters. (b) The electrical enhancements at the probe position as a function of the SiO2 disk thickness at different SiO2 disk diameters. (c) The local E-field enhancements as a function of SiO2 disk diameters for 1nm disk thickness. The solid lines are the guidance to the eye.

Fig. 4.
Fig. 4.

(a). Local electrical field amplitude distributions in the plane through the middle of the SiO2 disk at three primary cavity resonant modes for SiO2 disk thickness at 1nm (first row), 2nm (second row), 5nm (third row) and 10nm (fourth row). The wavelengths indicated in each picture are the wavelengths of excitation. (b) and (c) Snapshots of local electrical field vectors for the major cavity mode for the SiO2 thickness at 2nm (b) and 5nm (c) respectively. For the sake of clarity, logarithmic color scales are used. Red color represents the maximal field strength of individual pictures, and thus does not indicate the same field strength for pictures of different modes.

Fig. 5.
Fig. 5.

Optical circuit element representation of the optical nanoantenna.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tanh ( k d t 2 ) = ε d k m ε m k d
k sp d + k sp ( D d ) = 2 π

Metrics