Abstract

We report our recent work on surface plasmon polaritons manipulation of two-dimensional arrays of subwavelength bottle-shaped cavities on gold surface. By tuning the geometry of such “nanobottle” it is possible to control the resonant frequencies and near field patterns of different surface plasmon resonances. The plasmonic band structures are not sensitive to the sizes and depths of the nano-bottles, but depend strongly on the polarization. In particular, by using different polarizations, it is observed that different types of plasmonic resonances, whether propagating or localized, can be excited independently. Moreover, we find that the local field and field intensity can by fine-tuned by controlling the topology of the bottleneck of the nanobottle. As a result, we believe these nanobottle arrays are useful for making plasmonic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  2. F. J. Garcia de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys 79, 1267-1290 (2007).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007).
    [CrossRef]
  5. Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
    [CrossRef] [PubMed]
  6. C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
    [CrossRef]
  7. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
    [CrossRef] [PubMed]
  8. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface-Enhanced Raman Scattering: Physics and Application (Springer, Berlin, 2006).
    [CrossRef]
  9. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
    [CrossRef]
  10. S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
    [CrossRef] [PubMed]
  11. J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  13. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  14. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
    [CrossRef]
  15. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
    [CrossRef] [PubMed]
  16. E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006).
    [CrossRef]
  17. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
    [CrossRef]
  18. J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
    [CrossRef]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, Norwood, 2005).
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef] [PubMed]
  21. MEEP FDTD package from MIT. http://ab-initio.mit.edu/wiki/index.php/Meep.
  22. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  23. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  24. K. W. Yu and J. T. K. Wan, "Interparticle force in polydisperse electrorheological fluids," Comput. Phys. Commun. 129, 177-184 (2000).
    [CrossRef]

2008

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

2007

F. J. Garcia de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys 79, 1267-1290 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007).
[CrossRef]

2006

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006).
[CrossRef] [PubMed]

2005

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

2004

J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

2002

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

2000

K. W. Yu and J. T. K. Wan, "Interparticle force in polydisperse electrorheological fluids," Comput. Phys. Commun. 129, 177-184 (2000).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1996

S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Abdelsalam, M.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Baida, F. I.

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Bardou, N.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Bartlett, P.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Bermel, P.

Billaudeau, C.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

Burr, G. W.

Carminati, R.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Chen, Y.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Collin, S.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Ebbesen, T.W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Enoch, S.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Fan, S.

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Farjadpour, A.

Formanek, F.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Garc???ia-Vidal, F. J.

E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys 79, 1267-1290 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gralak, B.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Greffet, J.-J.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007).
[CrossRef]

Ibanescu, M.

Iu, H.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Joulain, K.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007).
[CrossRef]

Lamy de la Chapelle, M.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Lemoine, P.-A.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, J.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007).
[CrossRef]

Luk, W. C.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006).
[CrossRef]

Mulet, J.-P.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Neviere, M.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Ong, H. C.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

Pardo, F.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

Pelouard, J.-L.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Popov, E.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Reinisch, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Rodriguez, A.

Roundy, D.

Russell, P. S. J.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Samble, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Schmidt, M. A.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tyagi, H. K.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Van Labeke, D.

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Wan, J. T. K.

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

K. W. Yu and J. T. K. Wan, "Interparticle force in polydisperse electrorheological fluids," Comput. Phys. Commun. 129, 177-184 (2000).
[CrossRef]

Wilde, Y. D.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Yu, K. W.

K. W. Yu and J. T. K. Wan, "Interparticle force in polydisperse electrorheological fluids," Comput. Phys. Commun. 129, 177-184 (2000).
[CrossRef]

Appl. Phys. Lett.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, "Toward tunable light propagation and emission in thin nanostructured plasmonic waveguides," Appl. Phys. Lett. 92, 041111 (2008).
[CrossRef]

J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, "Large area two-dimensional plasmonic nanobottle arrays fabricated by interference lithography," Appl. Phys. Lett. 92, 213106 (2008).
[CrossRef]

Comput. Phys. Commun.

K. W. Yu and J. T. K. Wan, "Interparticle force in polydisperse electrorheological fluids," Comput. Phys. Commun. 129, 177-184 (2000).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

E. Moreno, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A: Pure Appl. Opt. 8, S94-S97 (2006).
[CrossRef]

Nat. Photonics

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1, 641-648 (2007).
[CrossRef]

Nature

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314 (2003).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Phys. Rev. Lett.

S. C. Kitson, W. L. Barnes, and J. R. Samble, "Full Photonic Band Gap for Surface Modes in the Visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys

F. J. Garcia de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys 79, 1267-1290 (2007).
[CrossRef]

Science

J. B. Pendry, L. Martin-Moreno, and F. J. Garc�??ıa-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other

K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface-Enhanced Raman Scattering: Physics and Application (Springer, Berlin, 2006).
[CrossRef]

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, Norwood, 2005).

MEEP FDTD package from MIT. http://ab-initio.mit.edu/wiki/index.php/Meep.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The cross-section of the unit cell defined for FDTD simulations. The cell has thickness t=1 µm and other parameters are defined in the text.

Fig. 2.
Fig. 2.

(a) Cross-section of the nanobottle array with an aperture of 160 nm, the red line outlines the bottle shape. (b) Plane view SEM image of the nanobottle array.

Fig. 3.
Fig. 3.

(a)–(c) Band structures for p-excited SP modes of l=0, 150 and 250 nm, open circles are the excited resonances. Frequency and in-plane wavevector are given in normalized units, where a 0=1µm. Lines are for visualization purpose, dotted lines are Wood’s anomalies given by Eq. (1), solid lines are given by surface plasmon dispersion relation [Eq. (2)], plasmon excitations are joined by red lines. Both (±1, 0) and (0,±1) SP modes are excited. (d)–(f) Band structures for s-excited SP modes, only (0,±1) SP mode is found.

Fig. 4.
Fig. 4.

Spectral field density of the p-excited (0,±1) resonances on z=0 and x=0 planes calculated by FDTD for different bottlenecks: l=0 [(a), (b)], 150 [(c), (d)], 250 [(e), (f)], and 325 nm [(g),(h)]. The pink solid lines outline the cross-section and aperture of the nanobottle.

Fig. 5.
Fig. 5.

Spectral field density of the s-excited (0,±1) resonances for the same cavities shown in Figs. 4(a)–(h).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω c = ( k x + n x 2 π a ) 2 + ( m x + 2 π a ) 2 ,
ω c = ε Au ε air ε Au + ε air ( k x + n x 2 π a ) 2 + ( m x + 2 π a ) 2 ,
p y n = 1 ( ε air ε Au ε air + ε Au ) n ( sinh α sinh n α ) 2 ,

Metrics