Abstract

The effect of polishing an optical workpiece with a polyurethane pad was studied in this paper, including material removal rate, surface roughness and subsurface damage. Usually, optical polishing pitch is applied to polish optical workpieces, but the material removal rate (MRR) of pitch is quite low, and polyurethane foam is thus substituted for polishing pitch. With the polyurethane pad a much higher MRR was obtained. Surface roughness and subsurface damage of workpieces were also examined. We were gratified to find that there was almost no subsurface damage in the workpieces manufactured with pad polishing and surface roughness was comparable to the result of pitch polishing. Finally, a hypothesis was proposed in an attempt to explain the result that workpieces were defect-free.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
    [CrossRef]
  2. A. A. Tesar and B. A. Fuchs, "Removal Rates of Fused Silica with Cerium Oxide/Pitch Polishing," Proc. SPIE 1531, 80-90 (1992).
    [CrossRef]
  3. M. J. Cumbo, "Chemo-mechanical Interactions in Optical Polishing," Ph.D. Dissertation, Univ. of Rochester, (Rochester, NY, 1993).
  4. L. M. Cook, "Chemical process in glass polishing," J. Non-Crystalline Solids 120, 152-171 (1990).
    [CrossRef]
  5. T. G. Parham, "Developing Optics finishing Technologies for the National Ignition Facility," ICF Quarterly Report 9, 177-191 (1999).
  6. T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
    [CrossRef]
  7. J. A. Randi, J. C. Lambropoulos and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
    [CrossRef] [PubMed]
  8. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).
  9. A. Lindquist, "Pitch, Polytron, and Polyurethane: a comparison," Appl. Opt. 25, 3796-3797 (1986).
    [CrossRef] [PubMed]
  10. R. R. Berggren and R. A. Schmell, "Pad polishing for rapid production of large flats," Proc. SPIE 3134, 252-257 (1997).
    [CrossRef]
  11. L.S. Ramanathan, S. Sivaram, and M. K. Mishra, "Polyurethane," in Polymer Data Handbook, J. E. Mark, ed., (Oxford Univ. Press, 1999).
  12. H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
    [CrossRef]
  13. J. W. Carr, E. Fearon, L. J. Summers, and I. D. Hutcheon, "Subsurface Damage Assessment with Atomic Force Microscopy," UCRL-JC-132385 (1999).
  14. F.W. Preston, "The theory and design of plate glass polishing machines," J. Soc. Glass Technol. 11, 214-256 (1927).
  15. J. Luo and D.A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
    [CrossRef]
  16. D. F. Horne, Optical Production Technology, Second Edition, (Adam Hilger Ltd., 1983), Chap. 1.
  17. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, "Slurry particle size evolution during the polishing of optical glass," Appl. Opt. 34, 3743-3755 (1995).
    [CrossRef] [PubMed]
  18. D. I. Bower, An Introduction to Polymer Physics, (Cambridge Univ. Press, 2002), Chap. 6.
  19. H. Eda, "Ductile grinding of ceramics: Machine tool and process" in Handbook of Advanced Ceramics Machining, D. Marinescu, ed., (CRC Press,FL, 2007).

2005 (3)

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

J. A. Randi, J. C. Lambropoulos and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
[CrossRef] [PubMed]

2002 (1)

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

2001 (2)

J. Luo and D.A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

1999 (1)

T. G. Parham, "Developing Optics finishing Technologies for the National Ignition Facility," ICF Quarterly Report 9, 177-191 (1999).

1997 (1)

R. R. Berggren and R. A. Schmell, "Pad polishing for rapid production of large flats," Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

1995 (1)

1992 (1)

A. A. Tesar and B. A. Fuchs, "Removal Rates of Fused Silica with Cerium Oxide/Pitch Polishing," Proc. SPIE 1531, 80-90 (1992).
[CrossRef]

1990 (1)

L. M. Cook, "Chemical process in glass polishing," J. Non-Crystalline Solids 120, 152-171 (1990).
[CrossRef]

1986 (1)

1927 (1)

F.W. Preston, "The theory and design of plate glass polishing machines," J. Soc. Glass Technol. 11, 214-256 (1927).

Akamatsu, S.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Berggren, R. R.

R. R. Berggren and R. A. Schmell, "Pad polishing for rapid production of large flats," Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

Cook, L. M.

L. M. Cook, "Chemical process in glass polishing," J. Non-Crystalline Solids 120, 152-171 (1990).
[CrossRef]

Cumbo, M. J.

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

DeGroote, J. E.

J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Dornfeld, D.A.

J. Luo and D.A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

Fairhurst, D.

Feit, M. D.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Fookes, B.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Fuchs, B. A.

A. A. Tesar and B. A. Fuchs, "Removal Rates of Fused Silica with Cerium Oxide/Pitch Polishing," Proc. SPIE 1531, 80-90 (1992).
[CrossRef]

Gregg, L. L.

J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Hayes, J. C.

J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Jacobs, S. D.

Kamimura, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Lambropoulos, J. C.

Lindquist, A.

Lu, H.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Luo, J.

J. Luo and D.A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

Machinski, S.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Marino, A. E.

J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Miller, P. E.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Motokoshi, S.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Obeng, Y.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Okamoto, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Parham, T. G.

T. G. Parham, "Developing Optics finishing Technologies for the National Ignition Facility," ICF Quarterly Report 9, 177-191 (1999).

Preston, F.W.

F.W. Preston, "The theory and design of plate glass polishing machines," J. Soc. Glass Technol. 11, 214-256 (1927).

Puchebner, B. E.

Randi, J. A.

Richardson, K.A.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Sakamoto, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Schmell, R. A.

R. R. Berggren and R. A. Schmell, "Pad polishing for rapid production of large flats," Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

Shiba, H.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Tesar, A. A.

A. A. Tesar and B. A. Fuchs, "Removal Rates of Fused Silica with Cerium Oxide/Pitch Polishing," Proc. SPIE 1531, 80-90 (1992).
[CrossRef]

Wong, L. L.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Yamamoto, M.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Yamato, I.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Yoshida, K.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

Appl. Opt. (3)

ICF Quarterly Report (1)

T. G. Parham, "Developing Optics finishing Technologies for the National Ignition Facility," ICF Quarterly Report 9, 177-191 (1999).

IEEE Trans. Semicond. Manuf. (1)

J. Luo and D.A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

J. Non-Crystalline Solids (1)

L. M. Cook, "Chemical process in glass polishing," J. Non-Crystalline Solids 120, 152-171 (1990).
[CrossRef]

J. Soc. Glass Technol. (1)

F.W. Preston, "The theory and design of plate glass polishing machines," J. Soc. Glass Technol. 11, 214-256 (1927).

Mater. Charact. (1)

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K.A. Richardson, "Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces," Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Proc. SPIE (5)

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Okamoto, and K. Yoshida, "Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica," Proc. SPIE 5273, 244-249 (2005).
[CrossRef]

J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, "Quantitative characterization of optical polishing pitch," Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

A. A. Tesar and B. A. Fuchs, "Removal Rates of Fused Silica with Cerium Oxide/Pitch Polishing," Proc. SPIE 1531, 80-90 (1992).
[CrossRef]

R. R. Berggren and R. A. Schmell, "Pad polishing for rapid production of large flats," Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 1-25 (2005).

Other (6)

L.S. Ramanathan, S. Sivaram, and M. K. Mishra, "Polyurethane," in Polymer Data Handbook, J. E. Mark, ed., (Oxford Univ. Press, 1999).

M. J. Cumbo, "Chemo-mechanical Interactions in Optical Polishing," Ph.D. Dissertation, Univ. of Rochester, (Rochester, NY, 1993).

J. W. Carr, E. Fearon, L. J. Summers, and I. D. Hutcheon, "Subsurface Damage Assessment with Atomic Force Microscopy," UCRL-JC-132385 (1999).

D. F. Horne, Optical Production Technology, Second Edition, (Adam Hilger Ltd., 1983), Chap. 1.

D. I. Bower, An Introduction to Polymer Physics, (Cambridge Univ. Press, 2002), Chap. 6.

H. Eda, "Ductile grinding of ceramics: Machine tool and process" in Handbook of Advanced Ceramics Machining, D. Marinescu, ed., (CRC Press,FL, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Sketch of polished surface with SSD

Fig. 2.
Fig. 2.

Texture of polyurethane polishing pad (a) top view (b) lateral view

Fig. 3.
Fig. 3.

Layout of PPS100

Fig. 4.
Fig. 4.

Material removal rate versus (a) normal load (b) spindle speed

Fig. 5.
Fig. 5.

Workpiece surface polished with pitch

Fig. 6.
Fig. 6.

Sketch of workpiece surface (a) before pitch polishing and (b) after 10-hour pitch polishing

Fig. 7.
Fig. 7.

Workpiece surface polished with a polyurethane pad

Fig. 8.
Fig. 8.

Sketch of workpiece surface (a) before pad polishing (b) after 2-hour pad polishing (c) after 4-hour pad polishing

Fig. 9.
Fig. 9.

Distribution of particle size (a) Used for 10 hours (b) Used for 60 hours

Tables (1)

Tables Icon

Table 1 Preston’s coefficient k for BK7 and Fused Silica (FS)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v ( r , θ ) = ds ( r , θ ) dt = R 2 Ω 2 + r 2 ( Ω ω ) 2 + 2 rR Ω ( Ω ω ) cos θ
MRR = kPv = kP ds dt = kP R 2 Ω 2 + r 2 ( Ω ω ) 2 + 2 rR Ω ( Ω ω ) cos θ
R a = CE p 2 3 P 1 3 d H w

Metrics