Abstract

We carry out simulations based on a four-layer Mie model to systematically analyze the sensing performance of ring resonator chemical vapor sensors. Two sensor configurations are investigated, in which a polymer layer is coated on either interior or exterior surface of a fused silica cylindrical ring resonator. Upon the interaction of the polymer and the vapor analyte, the refractive index (RI) and the thickness of the polymer layer change, leading to a spectral shift in the resonant modes that are supported by the ring resonator. The RI sensitivity and thickness sensitivity are studied as a function of the polymer coating thickness and RI, the ring resonator size and wall thickness, and resonant mode order and polarization. Similarities and differences between the two sensor configurations are also discussed. Our work should provide a general guidance in development of sensitive ring resonator chemical vapor sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, R. Bass, J. B. Boos, J. L. Stepnowski, and R. A. McGill, "Photonic microharp chemical sensors," Opt. Express 16, 2423-2430 (2008).
    [CrossRef] [PubMed]
  2. C. Mah and K. B. Thurbide, "Acoustic methods of detection in gas chromatography," J. Sep. Sci. 29, 1922-1930 (2006).
    [CrossRef] [PubMed]
  3. H. Xiao, J. Zhang, J. Dong, M. Luo, R. Lee, and V. Romero, "Synthesis of MFI zeolite films on optical fibers for detection of chemical vapors," Opt. Lett. 30, 1270-1272 (2005).
    [CrossRef] [PubMed]
  4. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, "Volatile organic compound sensing using a surface relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer," Opt. Lett. 32, 2523-2525 (2007).
    [CrossRef] [PubMed]
  5. T. M. Butler, E. Igata, S. J. Sheard, and N. Blackie, "Integrated optical Bragg-grating-based chemical sensor on a curved input edge waveguide structure," Opt. Lett. 24, 525-527 (1999).
    [CrossRef]
  6. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, "Coated Long-Period Fiber Gratings as High-Sensitivity Optochemical Sensors," J. Lightwave Technol. 24, 1776-1786 (2006).
    [CrossRef]
  7. G. H. Cross, Y. Ren, and M. J. Swann, "Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films," Analyst 125, 2173-2175 (2000).
    [CrossRef]
  8. R. P. Podgorsek and H. Franke, "Selective optical detection of aromatic vapors," Appl. Opt. 41, 601-608 (2002).
    [CrossRef] [PubMed]
  9. A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63- 65 (2004).
    [CrossRef]
  10. V. M. N. Passaro, F. Dell�??Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007).
    [CrossRef]
  11. F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
    [CrossRef]
  12. S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
    [CrossRef] [PubMed]
  13. Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008).
    [CrossRef] [PubMed]
  14. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
    [CrossRef]
  15. B. R. Johnson, "Theory of morphology-dependent resonances: shape resonances and width formulas," J. Opt. Soc. Am. A 10, 343-352 (1993).
    [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
    [CrossRef]
  17. J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
    [CrossRef]
  18. S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
    [CrossRef]
  19. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
    [CrossRef]
  20. I. Teraoka and S. Arnold, "Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer," J. Op. Soc. Am. B 23, 1434-1441 (2006).
    [CrossRef]
  21. I. Teraoka and S. Arnold, "Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching," J. Opt. Soc. Am. B 24, 653-659 (2007).
    [CrossRef]
  22. J. C. Solís, E. D. l. Rosa, and E. P. Cabrera, "Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure," Opt. Mater. 29, 167-172 (2006).
    [CrossRef]
  23. I. Teraoka and S. Arnold, "Coupled whispering gallery modes in a multilayer-coated microsphere," Opt. Lett. 32, 1147-1149 (2007).
    [CrossRef] [PubMed]
  24. I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
    [CrossRef]
  25. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
    [CrossRef] [PubMed]
  26. N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid.Nanofluid. 4, 117-127 (2008).
    [CrossRef]
  27. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  28. I. Teraoka and S. Arnold, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1947 (2003).
    [CrossRef]
  29. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  30. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, "Overview of novel integrated optical ring resonator bio/chemical sensors," in SPIE Laser Resonators and Beam Control X, 2007), 64520M.
  31. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  32. H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
    [CrossRef]
  33. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  34. R. A. Potyrailo and T. M. Sivavec, "Boosting Sensitivity of Organic Vapor Detection with Silicone Block Polyimide Polymers," Anal. Chem. 76, 7023-7027 (2004).
    [CrossRef] [PubMed]
  35. Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
    [CrossRef]

2008 (5)

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, R. Bass, J. B. Boos, J. L. Stepnowski, and R. A. McGill, "Photonic microharp chemical sensors," Opt. Express 16, 2423-2430 (2008).
[CrossRef] [PubMed]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid.Nanofluid. 4, 117-127 (2008).
[CrossRef]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

2007 (8)

I. Teraoka and S. Arnold, "Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching," J. Opt. Soc. Am. B 24, 653-659 (2007).
[CrossRef]

I. Teraoka and S. Arnold, "Coupled whispering gallery modes in a multilayer-coated microsphere," Opt. Lett. 32, 1147-1149 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

V. M. N. Passaro, F. Dell�??Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007).
[CrossRef]

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, "Volatile organic compound sensing using a surface relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer," Opt. Lett. 32, 2523-2525 (2007).
[CrossRef] [PubMed]

2006 (5)

C. Mah and K. B. Thurbide, "Acoustic methods of detection in gas chromatography," J. Sep. Sci. 29, 1922-1930 (2006).
[CrossRef] [PubMed]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, "Coated Long-Period Fiber Gratings as High-Sensitivity Optochemical Sensors," J. Lightwave Technol. 24, 1776-1786 (2006).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. Teraoka and S. Arnold, "Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer," J. Op. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

J. C. Solís, E. D. l. Rosa, and E. P. Cabrera, "Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure," Opt. Mater. 29, 167-172 (2006).
[CrossRef]

2005 (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

H. Xiao, J. Zhang, J. Dong, M. Luo, R. Lee, and V. Romero, "Synthesis of MFI zeolite films on optical fibers for detection of chemical vapors," Opt. Lett. 30, 1270-1272 (2005).
[CrossRef] [PubMed]

2004 (4)

A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63- 65 (2004).
[CrossRef]

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

R. A. Potyrailo and T. M. Sivavec, "Boosting Sensitivity of Organic Vapor Detection with Silicone Block Polyimide Polymers," Anal. Chem. 76, 7023-7027 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

2000 (1)

G. H. Cross, Y. Ren, and M. J. Swann, "Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films," Analyst 125, 2173-2175 (2000).
[CrossRef]

1999 (1)

1997 (1)

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

1996 (1)

1993 (1)

An, K.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Arnold, S.

Bass, R.

Bernasik, A.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Blackie, N.

Bolognesi, A.

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

Boos, J. B.

Budkowski, A.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Butler, T. M.

Cai, H.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Campopiano, S.

Chaure, S.

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

Chu, F.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Contessa, L.

Cross, G. H.

G. H. Cross, Y. Ren, and M. J. Swann, "Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films," Analyst 125, 2173-2175 (2000).
[CrossRef]

Culic-Viskota, J.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Cusano, A.

Cutolo, A.

Dale, P. S.

Dell???Olio, F.

V. M. N. Passaro, F. Dell�??Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007).
[CrossRef]

Dong, J.

Fan, X.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Fang, Z.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Ferraro, M. S.

Franke, H.

Frishman, G.

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

Frye-Mason, G.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

Gaathon, O.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Geng, J.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Giordano, M.

Gohring, J.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

Gordon, J. D.

Gorodetsky, M. L.

Goustouridis, D.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Greenblatt, J.

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

Guerra, G.

Han, X.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Hassan, A. K.

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

Holler, S.

Homer, M. L.

A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63- 65 (2004).
[CrossRef]

Iadicicco, A.

Igata, E.

Ilchenko, V. S.

Ja, S.-j.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Jaczewska, J.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Johnson, B. R.

Kaplan, D.

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

Kaushansky, N.

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

Khoshsima, M.

Ksendzov, A.

A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63- 65 (2004).
[CrossRef]

Lacey, S.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

Lee, J.-H.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Lee, R.

Lee, S.-B.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Leonardis, F. D.

V. M. N. Passaro, F. Dell�??Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007).
[CrossRef]

Liron, Z.

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

Lowder, T. L.

Luo, M.

Mah, C.

C. Mah and K. B. Thurbide, "Acoustic methods of detection in gas chromatography," J. Sep. Sci. 29, 1922-1930 (2006).
[CrossRef] [PubMed]

Manfreda, A. M.

A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63- 65 (2004).
[CrossRef]

McGill, R. A.

Mihnev, M.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Moon, H.-J.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid.Nanofluid. 4, 117-127 (2008).
[CrossRef]

Pamula, E.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Pang, F.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Papanicolaou, N. A.

Park, G.-W.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell�??Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid.Nanofluid. 4, 117-127 (2008).
[CrossRef]

Pilla, P.

Podgorsek, R. P.

Potyrailo, R. A.

R. A. Potyrailo and T. M. Sivavec, "Boosting Sensitivity of Organic Vapor Detection with Silicone Block Polyimide Polymers," Anal. Chem. 76, 7023-7027 (2004).
[CrossRef] [PubMed]

Qua, R.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Rabinovich, W. S.

Raczkowska, J.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Raptis, I.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Ray, A. K.

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

Ren, Y.

G. H. Cross, Y. Ren, and M. J. Swann, "Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films," Analyst 125, 2173-2175 (2000).
[CrossRef]

Romero, V.

Rysz, J.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Sanopoulou, M.

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Savchenkov, A. A.

Schultz, S. M.

Selfridge, R. H.

Sheard, S. J.

Shopova, S. I.

Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Sivavec, T. M.

R. A. Potyrailo and T. M. Sivavec, "Boosting Sensitivity of Organic Vapor Detection with Silicone Block Polyimide Polymers," Anal. Chem. 76, 7023-7027 (2004).
[CrossRef] [PubMed]

Solís, J. C.

J. C. Solís, E. D. l. Rosa, and E. P. Cabrera, "Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure," Opt. Mater. 29, 167-172 (2006).
[CrossRef]

Stepnowski, J. L.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Stievater, T. H.

Sun, Y.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

Suter, J. D.

Swann, M. J.

G. H. Cross, Y. Ren, and M. J. Swann, "Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films," Analyst 125, 2173-2175 (2000).
[CrossRef]

Teraoka, I.

Thompson, A.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

Thurbide, K. B.

C. Mah and K. B. Thurbide, "Acoustic methods of detection in gas chromatography," J. Sep. Sci. 29, 1922-1930 (2006).
[CrossRef] [PubMed]

Vollmer, F.

White, I. M.

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Xiao, H.

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid.Nanofluid. 4, 117-127 (2008).
[CrossRef]

Yang, B.

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

Yang, G.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

Zhang, J.

Zhu, H.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007).
[CrossRef] [PubMed]

Anal. Chem. (3)

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "Rapid on-Column Micro-Gas-Chromatography Detection with Capillary Based Optical Ring Resonators," Anal. Chem. 80, 2232-2238 (2008).
[CrossRef] [PubMed]

R. A. Potyrailo and T. M. Sivavec, "Boosting Sensitivity of Organic Vapor Detection with Silicone Block Polyimide Polymers," Anal. Chem. 76, 7023-7027 (2004).
[CrossRef] [PubMed]

Z. Liron, N. Kaushansky, G. Frishman, D. Kaplan, and J. Greenblatt, "The Polymer-Coated SAW Sensor as a Gravimetric Sensor," Anal. Chem. 69, 2848-2854 (1997).
[CrossRef]

Analyst (1)

G. H. Cross, Y. Ren, and M. J. Swann, "Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films," Analyst 125, 2173-2175 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Electron. Lett. (1)

A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63- 65 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Op. Soc. Am. B (1)

I. Teraoka and S. Arnold, "Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer," J. Op. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

S. Chaure, B. Yang, A. K. Hassan, A. K. Ray, and A. Bolognesi, "Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases," J. Phys. D: Appl. Phys.  37, 1558-1562 (2004).
[CrossRef]

J. Sep. Sci. (1)

C. Mah and K. B. Thurbide, "Acoustic methods of detection in gas chromatography," J. Sep. Sci. 29, 1922-1930 (2006).
[CrossRef] [PubMed]

Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid.Nanofluid. 4, 117-127 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Opt. Mater. (1)

J. C. Solís, E. D. l. Rosa, and E. P. Cabrera, "Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure," Opt. Mater. 29, 167-172 (2006).
[CrossRef]

Sens. Actuators B (1)

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007).
[CrossRef]

Sensors (1)

V. M. N. Passaro, F. Dell�??Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007).
[CrossRef]

Synth. Met. (1)

J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamula, A. Bernasik, and J. Rysz, "Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters," Synth. Met. 157, 726-732 (2007).
[CrossRef]

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[CrossRef]

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
[CrossRef]

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, "Overview of novel integrated optical ring resonator bio/chemical sensors," in SPIE Laser Resonators and Beam Control X, 2007), 64520M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Ring resonator chemical vapor sensor configurations, in which a polymer layer is coated on the exterior (A) or interior (B) surface of the ring resonator. OD: ring resonator outer diameter. t: polymer thickness. d: ring resonator wall thickness. n1, n2, n3, and n4 are the refractive indices for the medium inside (air), silica ring resonator, polymer, and medium outside (air), respectively.

Fig. 2.
Fig. 2.

The WGM radial distribution (left axis) and the potential well and k2 (right axis) of the 2nd order mode for various polymer thicknesses (A): 0.5 µm. (B) 2 µm. (C) 2.5 µm. and (D) 5 µm. Vertical lines indicate the boundaries of the ring resonator wall and the polymer layer. The relevant parameters are: OD=95 µm. d=3 µm. n1=1. n2=1.45. n3=1.40. n4=1. m=257. b-mode.

Fig. 3.
Fig. 3.

k2 as a function of polymer thickness for the first three WGMs. The relevant parameters are the same as in Fig. 2. Arrows indicate the polymer thickness used in Fig. 2.

Fig. 4.
Fig. 4.

RI sensitivity as a function of polymer thickness for the first three WGMs. The simulation parameters are the same as in Fig. 2. The RI sensitivity for the first order WGM of different polarization (a-mode) is also plotted.

Fig. 5.
Fig. 5.

RI sensitivity as a function of polymer thickness for the first three WGMs. The simulation parameters are the same as in Fig. 2, except that the polymer RI, n3, is 1.7. The RI sensitivity for the first order WGM of different polarization (a-mode) is also plotted.

Fig. 6.
Fig. 6.

k2 as a function of polymer thickness for the first three WGMs. The relevant parameters are: OD=95 µm. d=3 µm. n1=1. n2=1.45. n3=1.47. n4=1. m=257. b-mode. Inset: Intensity radial distribution for the first three modes when the polymer thickness is 0.5 µm (A) and 2.9 µm (B). Vertical lines indicate the boundaries of the ring resonator and the polymer layer. (B) The corresponding RI sensitivity. The RI sensitivity for the third order WGM of different polarization (a-mode) is also plotted.

Fig. 7.
Fig. 7.

RI sensitivity as a function of the ring resonator wall thickness for the first three WGMs. The polymer thickness is fixed at 1 µm. Other parameters are the same as in Fig. 6.

Fig. 8.
Fig. 8.

(A) k2 as a function of polymer thickness for the first three WGMs. Dashed line indicates the k2 position for the 1st order ring resonator wall mode in the absence of the polymer layer. The simulation parameters are the same as in Fig. 6, except that the polymer RI, n3, is 1.7. (B) The WGM radial distribution (left axis) and the potential well (right axis) of the 2nd order mode for various polymer thicknesses indicated by the arrows in (A). Vertical lines indicate the boundaries of the ring resonator wall and the polymer layer.

Fig. 9.
Fig. 9.

RI sensitivity as a function of polymer thickness for the first three WGMs. The polymer is coated on the inner surface of the ring resonator. The simulation parameters are the same as in Fig. 6, except that the polymer RI, n3, is 1.7.

Fig. 10.
Fig. 10.

k2 vs. ring resonator wall thickness for a fixed polymer thickness (A) and (C), and the corresponding RI sensitivity (B) and (D). Other parameters are the same as in Fig. 9.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V ( r ) = k 2 [ 1 n 2 ( r ) ] + m 2 r 2 ,
E m , l ( r ) = { A J m ( k n 1 r ) ( r O D 2 d ) B J m ( k n 2 r ) + C H m ( 1 ) ( k n 2 r ) ( O D 2 d r O D 2 ) , D J m ( k n 3 r ) + E H m ( 1 ) ( k n 3 r ) ( O D 2 r O D 2 + t ) F H m ( 1 ) ( k n 4 r ) ( r O D 2 + t )
S = d λ d ρ = λ t · t ρ + λ n 3 · n 3 t · t ρ + λ n 3 · n 3 ρ ,
S R I = λ n 3 = λ n eff η ,
δ n 3 = ( n 3 2 + 2 ) 2 6 n 3 1 3 ε 0 ( δ ρ ) α ,
D L = δ λ m S .
Q = 2 π n λ σ η ,

Metrics