Abstract

Opto-fluidic ring resonator (OFRR) dye lasers are embedded in low index polydimethylsiloxane (PDMS) to achieve enhanced portability, mechanical stability, and potential integration with conventional soft lithography based microfluidics for development of micro total analysis systems. The OFRR retains high Q-factors (>106) and exhibits low lasing threshold (<1 µJ/mm2). Fiber prisms and tapered optical fibers are used to directionally couple out the laser emission. At 2.2 µJ/mm2 pump intensity, the laser output from the fiber prism is 80 nW, corresponding to 50% power extraction efficiency. A microarray structure of parallel OFRRs is also demonstrated, allowing simultaneous multi-color emissions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, and D. Psaltis, "Optofluidic dye lasers," Microfluid.Nanofluid. 4, 145-158 (2008).
    [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  3. S. Balslev, and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005).
    [CrossRef] [PubMed]
  4. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
    [CrossRef] [PubMed]
  5. Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
    [CrossRef]
  6. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
    [CrossRef]
  7. S. I. Shopova, H. Zhu, and X. Fan, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
    [CrossRef]
  8. S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007).
    [CrossRef] [PubMed]
  9. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold," Opt. Express 15, 15523-15530 (2007).
    [CrossRef] [PubMed]
  10. I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
    [CrossRef]
  11. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  12. V. S. Ilchenko, X. S. Yao, and L. Maleki, "Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes," Opt. Lett. 24, 723-725 (1999).
    [CrossRef]
  13. O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
    [CrossRef]
  14. http://omlc.ogi.edu/spectra/PhotochemCAD/html/rhodamine6G.html
  15. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  16. F. Xu, and G. Brambilla, "Embedding optical microfiber coil resonators in Teflon," Opt. Lett. 32, 2164-2166 (2007).
    [CrossRef] [PubMed]
  17. M. Sumetsky, Y. Dulashko, and M. Fishteyn, "Demonstration of a multi-turn microfiber coil resonator," in Optical Fiber Communication Conference (2007), p. PDP46.

2008 (1)

Z. Li, and D. Psaltis, "Optofluidic dye lasers," Microfluid.Nanofluid. 4, 145-158 (2008).
[CrossRef]

2007 (7)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

F. Xu, and G. Brambilla, "Embedding optical microfiber coil resonators in Teflon," Opt. Lett. 32, 2164-2166 (2007).
[CrossRef] [PubMed]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

S. I. Shopova, H. Zhu, and X. Fan, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007).
[CrossRef] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold," Opt. Express 15, 15523-15530 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

2006 (2)

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

2005 (3)

1999 (2)

V. S. Ilchenko, X. S. Yao, and L. Maleki, "Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes," Opt. Lett. 24, 723-725 (1999).
[CrossRef]

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Balslev, S.

Brambilla, G.

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Cupps, J. M.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Emery, T.

Fan, X.

S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007).
[CrossRef] [PubMed]

S. I. Shopova, H. Zhu, and X. Fan, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold," Opt. Express 15, 15523-15530 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Gohring, J.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Henderson, E. P.

Ilchenko, V. S.

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Kou, Q.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Kristensen, A.

Lacey, S.

Li, Z.

Maleki, L.

Mansuripur, M.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Prentiss, M.

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Psaltis, D.

Scherer, A.

Schueller, O. J. A.

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Shopova, S. I.

Smith, S. P.

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Sun, Y.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold," Opt. Express 15, 15523-15530 (2007).
[CrossRef] [PubMed]

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

White, I. M.

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold," Opt. Express 15, 15523-15530 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Whitesides, G. M.

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Xu, F.

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Yang, G.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

Yao, X. S.

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Zhang, P.

Zhang, Z.

Zhao, X.-M.

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Zhu, H.

S. I. Shopova, H. Zhu, and X. Fan, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Adv. Mater. (1)

O. J. A. Schueller, X.-M. Zhao, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Fabrication of Liquid-Core Waveguides by Soft Lithography," Adv. Mater. 11, 37-41 (1999).
[CrossRef]

Appl. Phys. Lett. (5)

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," Appl. Phys. Lett. 91, 241104 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

S. I. Shopova, H. Zhu, and X. Fan, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Nanofluid. (1)

Z. Li, and D. Psaltis, "Optofluidic dye lasers," Microfluid.Nanofluid. 4, 145-158 (2008).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (2)

M. Sumetsky, Y. Dulashko, and M. Fishteyn, "Demonstration of a multi-turn microfiber coil resonator," in Optical Fiber Communication Conference (2007), p. PDP46.

http://omlc.ogi.edu/spectra/PhotochemCAD/html/rhodamine6G.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Conceptual illustrations of the glass OFRR embedded in PDMS. The laser emission can be directionally coupled out through a fiber prism (a) or a tapered optical fiber (b) for easy and efficient light delivery. θ (15°) is the fiber prism angle.

Fig. 2.
Fig. 2.

(a). Top: R6G WGM lasing spectrum collected with a fiber prism. The inset shows the picture of a fiber prism. Middle: Emission from the fiber prism vs. excitation intensity. Threshold is estimated to be 0.7 µJ/mm2. Bottom: Photograph of three color simultaneous emission out of the fiber ends when three parallel OFRRs are filled with Coumarin 504 (left, λpeak=480 nm), R6G (middle, λpeak=600 nm), and LDS 722 (right, λpeak=730 nm). A long-pass filter is used to remove the excitation light. (b) Top: R6G WGM lasing spectrum collected with a tapered fiber. Middle: Emission from the taper vs. excitation intensity. Threshold is estimated to be 0.5 µJ/mm2. Bottom: Photograph of R6G laser emission from the end of a tapered fiber. A long-pass filter is used to remove the excitation light. In all cases, dye concentration is 2 mM.

Fig. 3.
Fig. 3.

Spectrum of the OFRR laser when Coumarin 504 (1 mM) and R6G (1 mM) mixture is flowed through the OFRR. Excitation wavelength: 450 nm. Laser emission is out-coupled by a fiber prism.

Fig. 4.
Fig. 4.

Radial distributions for (a) 1st order (b) 2nd order (c) and 3rd order modes. Intrinsic Q-factor for each exceeds 107. OD=75 µm, wall thickness=5 µm, n1=1.626, n2=1.45, n3=1.41. Dashed lines are the OFRR inner and outer surface.

Fig. 5.
Fig. 5.

WGM resonance displaying a Q-factor of 2.6×106. Tunable diode laser wavelength is 780 nm.

Fig. 6.
Fig. 6.

WGM lasing emission from a bare PDMS channel using 0.5 mM R6G. Excitation wavelength is 540 nm.

Metrics