Abstract

A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, "Polarization-optical time domain reflectometry: A technique for the measurement of field distributions," Appl. Opt. 20, 1060-1074 (1981).
    [CrossRef] [PubMed]
  2. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Express 13, 666-674 (2005).
    [CrossRef] [PubMed]
  3. L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, "Distributed Brillouin scattering sensor for discrimination of wall thinning defects in steel pipe under internal pressure," Appl. Opt. 43, 1583-1588 (2004).
    [CrossRef] [PubMed]
  4. C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
    [PubMed]
  5. K. Hotate and S. S. L. Ong, "Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement," Proc. SPIE 4920, 299-310 (2002).
    [CrossRef]
  6. X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
    [CrossRef]
  7. B. Hunttner, B. Gisin, and N. Gisin, "Distributed PMD measurement with a Polarization-OTDR in optical fibers," J. Lightwave Technol. 17, 1843-1848 (1999).
    [CrossRef]
  8. A. J. Rogers, Y. R. Zhou, and V. A. Handerek, "Computational polarization�??Optical time domain reflectometry for measurement of the spatial distribution of PMD in optical fibers," in 4th Optical Fiber Measurement Conf., OFMC �??97, (Teddington, U.K.1997), pp.126-129.
  9. J. C. Juarez and H. F. Taylor, "Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system," Opt. Lett. 30, 3284-3286 (2005).
    [CrossRef]

2008 (1)

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

2005 (2)

2004 (1)

2002 (1)

K. Hotate and S. S. L. Ong, "Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement," Proc. SPIE 4920, 299-310 (2002).
[CrossRef]

1999 (1)

1981 (1)

Afshar, S.

Bao, X.

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, "Distributed Brillouin scattering sensor for discrimination of wall thinning defects in steel pipe under internal pressure," Appl. Opt. 43, 1583-1588 (2004).
[CrossRef] [PubMed]

C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
[PubMed]

Benmokrane, B.

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

Chen, L.

Cousin, B.

C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
[PubMed]

Deif, A.

C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
[PubMed]

Eisa, M.

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

El-Gamal, S.

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

Ferrier, G. A.

Froggatt, M.

Gifford, D.

Gisin, B.

Gisin, N.

Hotate, K.

K. Hotate and S. S. L. Ong, "Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement," Proc. SPIE 4920, 299-310 (2002).
[CrossRef]

Hunttner, B.

Juarez, J. C.

Li, W.

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
[PubMed]

Martín-Pérez, B.

C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
[PubMed]

Ong, S. S. L.

K. Hotate and S. S. L. Ong, "Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement," Proc. SPIE 4920, 299-310 (2002).
[CrossRef]

Rogers, A. J.

Soller, B.

Taylor, H. F.

Wolfe, M.

Yu, Q.

Zhang, C.

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

C. Zhang, X. Bao, W. Li, A. Deif, B. Cousin and B. Martín-Pérez, "Crack detection of a reinforced concrete beam with distributed Brillouin fiber sensor," Appl. Opt. (to be published)
[PubMed]

Zou, L.

Appl. Opt. (3)

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

K. Hotate and S. S. L. Ong, "Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement," Proc. SPIE 4920, 299-310 (2002).
[CrossRef]

Smart Mater. Struct. (1)

X. Bao, W. Li, C. Zhang, M. Eisa, S. El-Gamal, and B. Benmokrane, "Monitoring the distributed impact wave on concrete slab due to the traffics based on polarization dependence on the stimulated Brillouin scattering," Smart Mater. Struct. 17, 015003-015008 (2008).
[CrossRef]

Other (1)

A. J. Rogers, Y. R. Zhou, and V. A. Handerek, "Computational polarization�??Optical time domain reflectometry for measurement of the spatial distribution of PMD in optical fibers," in 4th Optical Fiber Measurement Conf., OFMC �??97, (Teddington, U.K.1997), pp.126-129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of Polarization-OTDR system

Fig. 2.
Fig. 2.

Schematic diagram for data processing

Fig. 3.
Fig. 3.

Piezo fiber stretcher driven by 5Vpp square wave, FFT spectrum of time trace signal at 550m of (a) 22Hz driven signal; (b) 4234Hz driven signal; (c) FFT spectrum of P-OTDR signal (black solid line) comparing to the spectrum of sweep driven signal (red dotted line), from 15Hz to 30Hz; (d) FFT spectrum of P-OTDR signal (black solid line) comparing to the spectrum of sweep driven signal (red dotted line), from 4600 to 4680Hz.

Fig. 4.
Fig. 4.

(a). a typical Polarization-OTDR curve for 10m lead fiber+500m SMF+40m piezo fiber stretcher+300m SMF+ polarization controller+200m SMF; (b). FFT spectrum for any point before the piezo fiber stretcher: no obvious peaks; (c). FFT spectrum for any point between the piezo fiber stretcher and polarization controller: one peak at 37Hz; (d). FFT spectrum for any point beyond the polarization controller: one peak at 37Hz and the other at 25Hz

Fig. 5.
Fig. 5.

Magnitude of 25Hz along the fiber link for (a) only the piezo fiber stretcher vibrating at 25Hz; (b) both the piezo fiber stretcher and the polarization controller vibrating at 25Hz.

Metrics