Abstract

The development of the large angular aperture noncollinear acousto-optic tunable filter (AOTF) is based on the parallel tangents momentum-matching condition. In this letter, we have introduced a special double-filtering method that leads to an enhancement of the spectral resolution. And the birefringence together with the rotatory property of the interaction material has been considered to ensure the accuracy of designing an AOTF. The principle and availability of double-filtering are discussed in detail. It is confirmed that double-filtering method is effective to enhance the spectral resolution on the condition of keeping the quality of imaging, which is significant in practical applications of imaging AOTF.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
    [CrossRef]
  2. N. Gupta and V. B. Voloshinov, "Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range," Appl. Opt. 46, 1081-1088 (2007).
    [CrossRef] [PubMed]
  3. V. B. Voloshinov et al., "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A 9, 341-347 (2007).
    [CrossRef]
  4. C. Zhang et al., "Design and analysis of a noncollinear acousto-optic tunable filter," Opt. Lett. 32, 2417-2419 (2007).
    [CrossRef] [PubMed]
  5. C. Zhang et al., "Analysis of the optimum optical incident angle for an imaging acousto-optic tunable filter," Opt. Express 15, 11883-11888 (2007).
    [CrossRef] [PubMed]
  6. I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
    [CrossRef]
  7. P. A. Gass and J. R. Sambles, "Accurate design of noncollinear acousto-optic tunable filter," Opt. Lett. 16, 429-431 (1991).
    [CrossRef] [PubMed]
  8. N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
    [CrossRef]
  9. D. R. Suhre and J. G. Throdore, "White-light imaging by use of a multiple passband acousto-optic tunable filter," Appl. Opt. 35, 4494-4501 (1996).
    [CrossRef] [PubMed]
  10. I. C. Chang, "Analysis of the noncollinear acousto-optic filter," Electron. Lett. 11, 617-618 (1975).
    [CrossRef]
  11. I. C. Chang and P. Katzka, "Enhancement of acousto-optic filter resolution using birefringence dispersion in CdS," Opt. Lett. 7, 535-536 (1982).
    [CrossRef] [PubMed]
  12. L. J. Denes et al., "Image processing using acousto-optical tunable filtering," Proc. SPIE 2962, 111-121 (1997).
    [CrossRef]
  13. V. �?. Pozhar and V. I. Pustovoĭt, "Consecutive collinear diffraction of light in several acoustooptic cells," Sov. J. Quantum Electron. 15, 1438-1441 (1985).
    [CrossRef]

2007

2002

N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

1997

L. J. Denes et al., "Image processing using acousto-optical tunable filtering," Proc. SPIE 2962, 111-121 (1997).
[CrossRef]

1996

1991

1985

V. �?. Pozhar and V. I. Pustovoĭt, "Consecutive collinear diffraction of light in several acoustooptic cells," Sov. J. Quantum Electron. 15, 1438-1441 (1985).
[CrossRef]

1982

1975

I. C. Chang, "Analysis of the noncollinear acousto-optic filter," Electron. Lett. 11, 617-618 (1975).
[CrossRef]

1974

I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
[CrossRef]

1971

N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
[CrossRef]

Chang, I. C.

I. C. Chang and P. Katzka, "Enhancement of acousto-optic filter resolution using birefringence dispersion in CdS," Opt. Lett. 7, 535-536 (1982).
[CrossRef] [PubMed]

I. C. Chang, "Analysis of the noncollinear acousto-optic filter," Electron. Lett. 11, 617-618 (1975).
[CrossRef]

I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
[CrossRef]

Dahmani, R.

N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Denes, L. J.

L. J. Denes et al., "Image processing using acousto-optical tunable filtering," Proc. SPIE 2962, 111-121 (1997).
[CrossRef]

Gass, P. A.

Gupta, N.

N. Gupta and V. B. Voloshinov, "Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range," Appl. Opt. 46, 1081-1088 (2007).
[CrossRef] [PubMed]

N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Katzka, P.

Pozhar, V. ??.

V. �?. Pozhar and V. I. Pustovoĭt, "Consecutive collinear diffraction of light in several acoustooptic cells," Sov. J. Quantum Electron. 15, 1438-1441 (1985).
[CrossRef]

Pustovoit, V. I.

V. �?. Pozhar and V. I. Pustovoĭt, "Consecutive collinear diffraction of light in several acoustooptic cells," Sov. J. Quantum Electron. 15, 1438-1441 (1985).
[CrossRef]

Sambles, J. R.

Suhre, D. R.

Throdore, J. G.

Uchida, N.

N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
[CrossRef]

Voloshinov, V. B.

Zhang, C.

Appl. Opt.

Appl. Phys. Lett.

I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
[CrossRef]

Electron. Lett.

I. C. Chang, "Analysis of the noncollinear acousto-optic filter," Electron. Lett. 11, 617-618 (1975).
[CrossRef]

J. Opt. A

V. B. Voloshinov et al., "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A 9, 341-347 (2007).
[CrossRef]

Opt. Eng.

N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B.

N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
[CrossRef]

Proc. SPIE

L. J. Denes et al., "Image processing using acousto-optical tunable filtering," Proc. SPIE 2962, 111-121 (1997).
[CrossRef]

Sov. J. Quantum Electron.

V. �?. Pozhar and V. I. Pustovoĭt, "Consecutive collinear diffraction of light in several acoustooptic cells," Sov. J. Quantum Electron. 15, 1438-1441 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The wave vector diagram of noncollinear AOTF. [001] axis is the optic axis.

Fig. 2.
Fig. 2.

(a). The principle picture of double-filtering method. (b) The situation of the spectral bandwidth after double-filtering. η 0=1 is assumed. λ10 is fixed at 500 nm.

Fig. 3.
Fig. 3.

(a). Double-filtering spectral bandwidth Δλ 12 versus the centered wavelength interval Δ′ at a series of reference wavelength λ 10. (b). The maximum diffraction efficiency (η 12)max versus the centerd wavelength interval Δ′ at a series of reference wavelength λ 10.

Fig. 4.
Fig. 4.

At a series of reference wavelength λ 10, the value of factor Q. (a) The relationship between Q and the interval Δ′, Q1=Δλ1/(η 1)max, Q12λ 12/(η 12)max, dash line indicates Q1 and solid line indicates Q12. (b) At the equal point (Q1=Q12), the relationship between Q and Δ′.

Fig. 5.
Fig. 5.

The condition of the enhancement of the spectral resolution at the equal points of Q1=Q12.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n i = [ cos 2 θ i [ n o 2 ( 1 + σ ) 2 ] + sin 2 θ i n e 2 ] 1 2 ,
n d = [ cos 2 θ d [ n o 2 ( 1 σ ) 2 ] + sin 2 θ d n o 2 ] 1 2
n o = [ 1 + A λ 0 2 ( λ 0 2 B 2 ) + C λ 0 2 ( λ 0 2 D 2 ) ] 1 2
n e = [ 1 + E λ 0 2 ( λ 0 2 B 2 ) + F λ 0 2 ( λ 0 2 G 2 ) ] 1 2
tan θ d = ( n o n e ) 2 [ ( 1 + σ ) 2 ( 1 σ ) 2 ] tan θ i
tan ( θ a ) = ( n i sin θ i n d sin θ d ) ( n i cos θ i n d cos θ d )
tan ( θ a ) = tan θ i { [ n o 4 n e 2 ( 1 + σ ) 6 tan 2 θ i + n e 6 ( 1 σ ) 2 ] 1 2 [ n o 4 ( 1 + σ ) 6 tan 2 θ i + n o 4 n e 2 ( 1 σ ) 4 ] 1 2 } [ n o 4 n e 2 ( 1 + σ ) 6 tan 2 θ i + n e 6 ( 1 σ ) 2 ] 1 2 [ n o 2 n e 4 ( 1 σ ) 4 ( 1 + σ ) 2 tan 2 θ i + n e 6 ( 1 σ ) 4 ] 1 2 .
η = η 0 sin 2 ( π δ ) ( π δ ) 2 = η 0 sin 2 ( Δ k 1 L 2 ) ( Δ k 1 L 2 ) 2 .
Δ k 1 = ( k i + K a k d ) · ( k i k i ) = k i k d cos α + K a · ( k i k i ) .
Δ k 1 = k i k d + K a [ cos θ a cos θ i + sin θ a sin θ i cos ( ϕ a ϕ i ) ] .
Δ k 1 = ( 2 π λ 0 ) [ n i n d an d cos ( θ i + θ a ) ] .
Δ k 1 = Δ k 1 λ 0 Δ k 1 = 0 · δ λ 0 + 2 Δ k 1 θ i 2 Δ k 1 = 0 · δ θ i 2 2 + 2 Δ k 1 ϕ i 2 Δ k 1 = 0 · δ ϕ i 2 2 .
Δ k 1 λ 0 Δ k 1 = 0 = 2 π λ 0 [ ( n i n d ) λ 0 ] = 2 π ( 1 λ 0 2 ) { [ ( n i n d ) λ 0 ] λ 0 ( n i n d ) } = b λ 0 2 ,
Δ λ = 2 δ λ 0 = 1.8 π λ 0 2 b L .

Metrics