Abstract

We report on the development of highly dispersive mirrors for chirped-pulse oscillators (CPO) and amplifiers (CPA). In this proof-of-concept study, we demonstrate the usability of highly dispersive multilayer mirrors for high-energy femtosecond oscillators, namely for i) a chirped-pulse Ti:Sa oscillator and ii) an Yb:YAG disk oscillator. In both cases a group delay dispersion (GDD) of the order of 2×104 fs2 was introduced, accompanied with an overall transmission loss as low as ~2 per cent. This unprecedented combination of high dispersion and low loss over a sizeable bandwidth with multilayer structures opens the prospects for femtosecond CPA systems equipped with a compact, alignment-insensitive all-mirror compressors providing compensation of GDD as well as higher-order dispersion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).
    [CrossRef] [PubMed]
  3. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
    [CrossRef] [PubMed]
  4. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
    [CrossRef]
  5. V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).
  6. G. Steinmeyer, "Femtosecond dispersion compensation with multiplayer coatings: toward the optical octave," Appl. Opt. 45, 1484-1490 (2006).
    [CrossRef] [PubMed]
  7. G. Steinmeyer and G. Stibenz, "Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors," Appl. Phys. B 82, 175-181 (2006).
    [CrossRef]
  8. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
    [CrossRef]
  9. A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
    [CrossRef]
  10. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
    [CrossRef]
  11. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 μJ from a femtosecond thin disk laser," Opt. Lett. 31, 2728-2730 (2006).
    [CrossRef] [PubMed]
  12. S. Dewald, T. Lang, C. D. Schröter, R. Moshammer, J. Ulrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from laser oscilator," Opt. Lett. 31, 2072-2074 (2006).
    [CrossRef] [PubMed]
  13. G. Palmer, M. Siegel, A. Steinmann, and U. Morgner, "Microjoule pulses from a passively mode-locked Yb: KY(WO4)2 thin-disk oscilator with cavity dumping," Opt. Lett. 32, 1593-1595 (2007).
    [CrossRef] [PubMed]
  14. S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, "Efficient femtosecond high power Yb:Lu2O3 thin disk laser," Opt. Express 15, 16966-16971 (2007).
    [CrossRef] [PubMed]
  15. OptiLayer software: http://www.optilayer.com.
  16. A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, "Second order optimization methods in the synthesis of multilayer coatings," Comp. Maths. Math. Phys. 33, 1339-1352 (1993).
  17. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef] [PubMed]
  18. V. Laude and P. Tournois, "Chirped-mirror pairs for ultra-broadband dispersion control," in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuR.
  19. V. Pervak, F. Krausz, and A. Apolonski, "Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers," Opt. Lett. 32, 1183-1185 (2007).
    [CrossRef] [PubMed]
  20. V. Pervak, S. Naumov, F. Krausz, and A. Apolonski, "Chirped mirrors with low dispersion ripple," Opt. Express 15, 13768-13772 (2007).
    [CrossRef] [PubMed]
  21. R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
    [CrossRef]
  22. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, "Double Gires�??Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers," Opt. Lett. 25, 275-277 (2000).
    [CrossRef]
  23. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
    [CrossRef] [PubMed]
  24. H. A. Haus, J. G. Fujimoto, and E. P. Ippen. "Structures for additive pulse mode-locking," J. Opt. Soc. Am B 8, 2068-2076 (1991).
    [CrossRef]
  25. F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
    [CrossRef]
  26. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
    [CrossRef] [PubMed]
  27. G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, " All-Chirped-Mirror Pulse Compressor for Nonlinear Microscopy," in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WF2.

2007

2006

2005

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

2004

2003

2000

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, "Double Gires�??Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers," Opt. Lett. 25, 275-277 (2000).
[CrossRef]

1997

1996

1994

1993

A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, "Second order optimization methods in the synthesis of multilayer coatings," Comp. Maths. Math. Phys. 33, 1339-1352 (1993).

1992

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

1991

H. A. Haus, J. G. Fujimoto, and E. P. Ippen. "Structures for additive pulse mode-locking," J. Opt. Soc. Am B 8, 2068-2076 (1991).
[CrossRef]

1985

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219 (1985).
[CrossRef]

Apai, P.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Apolonski, A.

V. Pervak, S. Naumov, F. Krausz, and A. Apolonski, "Chirped mirrors with low dispersion ripple," Opt. Express 15, 13768-13772 (2007).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

V. Pervak, F. Krausz, and A. Apolonski, "Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers," Opt. Lett. 32, 1183-1185 (2007).
[CrossRef] [PubMed]

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

Aschwanden, A.

Austin, R. R.

Baer, C. R. E.

Brabec, Th.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Brunner, F.

Curley, P. F.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

DeBell, G.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

DeBell, G. W.

Dewald, S.

Diddams, S. A.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Engqvist, A. G.

Ferencz, K.

Fermann, M. E.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Fernandez, A.

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

Fuji, T.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen. "Structures for additive pulse mode-locking," J. Opt. Soc. Am B 8, 2068-2076 (1991).
[CrossRef]

Fürbach, A.

Gallmann, L.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

Golling, M.

Golubovic, B.

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Grange, R.

Häring, R.

Haus, H. A.

Heine, C.

Hofer, M.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Hönninger, C.

Huber, G.

Innerhofer, E.

Ippen, E. P.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen. "Structures for additive pulse mode-locking," J. Opt. Soc. Am B 8, 2068-2076 (1991).
[CrossRef]

Jones, D. J.

Kärtner, F. X.

Keller, U.

Koházi-Kis, A.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Kovács, A. P.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Kränkel, C.

Krausz, F.

V. Pervak, S. Naumov, F. Krausz, and A. Apolonski, "Chirped mirrors with low dispersion ripple," Opt. Express 15, 13768-13772 (2007).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, "Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers," Opt. Lett. 32, 1183-1185 (2007).
[CrossRef] [PubMed]

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Kumkar, M.

Lako, S.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Lang, T.

Lermann, G.

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

Louderback, A. W.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Maas, D. J. H. C.

Marchese, S. V.

Matuschek, N.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Morf, R.

Morgner, U.

Moshammer, R.

Mott, L.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219 (1985).
[CrossRef]

Naumov, S.

V. Pervak, S. Naumov, F. Krausz, and A. Apolonski, "Chirped mirrors with low dispersion ripple," Opt. Express 15, 13768-13772 (2007).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Ober, M. H.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Palmer, G.

Paschotta, R.

Pervak, V.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

V. Pervak, F. Krausz, and A. Apolonski, "Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers," Opt. Lett. 32, 1183-1185 (2007).
[CrossRef] [PubMed]

V. Pervak, S. Naumov, F. Krausz, and A. Apolonski, "Chirped mirrors with low dispersion ripple," Opt. Express 15, 13768-13772 (2007).
[CrossRef] [PubMed]

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

Petermann, K.

Peters, R.

Poppe, A.

Reed, M. K.

Scheuer, V.

Schibli, T.

Schmidt, A. J.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Schröter, C. D.

Siegel, M.

Spielmann, C.

Spielmann, Ch.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Steiner-Shepard, M. K.

Steinmann, A.

Steinmeyer, G.

G. Steinmeyer, "Femtosecond dispersion compensation with multiplayer coatings: toward the optical octave," Appl. Opt. 45, 1484-1490 (2006).
[CrossRef] [PubMed]

G. Steinmeyer and G. Stibenz, "Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors," Appl. Phys. B 82, 175-181 (2006).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

Stibenz, G.

G. Steinmeyer and G. Stibenz, "Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors," Appl. Phys. B 82, 175-181 (2006).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219 (1985).
[CrossRef]

Südmeyer, T.

Sutter, D. H.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

Szipocs, R.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Szipöcs, R.

Tempea, G.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

Tikhonov, A. N.

A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, "Second order optimization methods in the synthesis of multilayer coatings," Comp. Maths. Math. Phys. 33, 1339-1352 (1993).

Tikhonravov, A. V.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996).
[CrossRef] [PubMed]

A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, "Second order optimization methods in the synthesis of multilayer coatings," Comp. Maths. Math. Phys. 33, 1339-1352 (1993).

Tikhonravov, A.V.

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

Tilsch, M.

Trubetskov, M. K.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996).
[CrossRef] [PubMed]

A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, "Second order optimization methods in the synthesis of multilayer coatings," Comp. Maths. Math. Phys. 33, 1339-1352 (1993).

Tschudi, T.

Ulrich, J.

Van Engen, A. G.

Verhoef, A.

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

Wintner, E.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

Yakovlev, V.

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

Appl. Opt.

Appl. Phys. B

R. Szipocs, A. Koházi-Kis, S. Lako, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A. W. Louderback, A.V. Tikhonravov, M. K. Trubetskov: "Negative Dispersion Mirrors for Dispersion Control in Femtosecond Lasers: Chirped Dielectric Mirrors and Multi-cavity Gires-Tournois Interferometers," Appl. Phys. B 70, S51-S57 (2000).
[CrossRef]

G. Steinmeyer and G. Stibenz, "Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors," Appl. Phys. B 82, 175-181 (2006).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, "Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics," Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

Appl. Phys. B.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, "1.5-octave chirped mirror for pulse compression down to sub-3 fs, "Appl. Phys. B. 87, 5-12 (2007).
[CrossRef]

Appl.Phys. B

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski. "Generation of 60-nJ sub-40-fs pulses at 70 MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

Comp. Maths. Math. Phys.

A. N. Tikhonov, A. V. Tikhonravov, and M. K. Trubetskov, "Second order optimization methods in the synthesis of multilayer coatings," Comp. Maths. Math. Phys. 33, 1339-1352 (1993).

IEEE J. Quantum Electron.

F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, "Femtosecond solid-state lasers," IEEE J. Quantum Electron. 28, 2097-2122 (1992).
[CrossRef]

J. Opt. Soc. Am B

H. A. Haus, J. G. Fujimoto, and E. P. Ippen. "Structures for additive pulse mode-locking," J. Opt. Soc. Am B 8, 2068-2076 (1991).
[CrossRef]

New J. Phys.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

S. Dewald, T. Lang, C. D. Schröter, R. Moshammer, J. Ulrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from laser oscilator," Opt. Lett. 31, 2072-2074 (2006).
[CrossRef] [PubMed]

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 μJ from a femtosecond thin disk laser," Opt. Lett. 31, 2728-2730 (2006).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, "Dispersion control over the UV-VIS-NIR spectral range with HfO2/SiO2 chirped dielectric multilayers," Opt. Lett. 32, 1183-1185 (2007).
[CrossRef] [PubMed]

G. Palmer, M. Siegel, A. Steinmann, and U. Morgner, "Microjoule pulses from a passively mode-locked Yb: KY(WO4)2 thin-disk oscilator with cavity dumping," Opt. Lett. 32, 1593-1595 (2007).
[CrossRef] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367-369 (2003).
[CrossRef] [PubMed]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, "Double Gires�??Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers," Opt. Lett. 25, 275-277 (2000).
[CrossRef]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Proc. SPIE

V. Pervak, S. Naumov, G. Tempea, V. Yakovlev, F. Krausz, and A. Apolonski, "Synthesis and manufacturing the mirrors for ultrafast optics," Proc. SPIE 5963, 490-499 (2005).

Other

V. Laude and P. Tournois, "Chirped-mirror pairs for ultra-broadband dispersion control," in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuR.

OptiLayer software: http://www.optilayer.com.

G. Tempea, B. Považay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Drexler, " All-Chirped-Mirror Pulse Compressor for Nonlinear Microscopy," in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper WF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The refractive index profile of HDMs. (a): HDM for Ti:Sa CPO, (b): for Yb:YAG oscillator.

Fig. 2.
Fig. 2.

The calculated GDD and reflectivity of HDMs. (a): HDM for Ti:sapphire CPO, (b): for Yb:YAG oscillator.

Fig. 3.
Fig. 3.

Change in the temporal profile of a 60-fs pulse by bouncing 20 times off the 800-nm HDM design shown in Fig. 2 (simulation). The red and the blue curves show the temporal intensity profile before and after the bounces, respectively. In the analysis, the nominal (average) value of the mirror GDD was disregarded with only the spectral ripples affecting propagation.

Fig. 4.
Fig. 4.

Error analysis of the 800-nm (a) and 1030-nm (b) HDM designs. The envelopes of the green error bars represent worst-case boundaries for of +/-1 nm errors in the physical thicknesses of the layers. The red line is the average of 100 curves with random +/-1 nm errors. The blue line plots the calculated GDD curve. Worst-case deviations appear to be comparable to the nominal value of the mean GDD.

Fig. 5.
Fig. 5.

The GDD (red) and group delay (GD, green) curves of two types of HDMs measured with white light interferometer. (a): a mirror for Ti:sapphire CPO, (b): a mirror for Yb:YAG oscillator.

Fig. 6.
Fig. 6.

The penetration depth of spectral components into the HDM structure shown in Fig.1a. Light enters the structure from the left side.

Fig. 7.
Fig. 7.

(a): Interferometric autocorrelation trace of 0.25-µJ pulses delivered by a Ti:Sa CPO and compressed via 20 bounces off the 800-nm HDMs presented above. (b): Intensity autocorrelation trace of 3.5-µJ pulses produced by an Yb:YAG disk oscillator.

Fig. 8.
Fig. 8.

The highest value of negative GDD realized with magnetron sputtering of the layer materials Ta2O5, Nb2O5 and SiO2, as a function of the relative bandwidth, obtained at two different design wavelengths: 0.8 µm (blue dots) and 1 µm (red dots). Green circles mark the values realized with the HDMs described in this paper. The lines connecting the points serve as a guide to the eye.

Metrics