Abstract

Temporal-statistical analysis of laser-speckle image (TS-LSI) preserves the original spatial resolution, in contrast to conventional spatialstatistical analysis (SS-LSI). Concerns have been raised regarding the temporal independency of TS-LSI signals and its insensitivity toward stationary-speckle contamination. Our results from flow phantoms and in vivo rat retinas demonstrated that the TS-LSI signals are temporally statistically independent and TS-LSI minimizes stationary-speckle contamination. The latter is because the stationary speckle is “non-random” and thus non-ergodic where the temporal average of stationary speckle needs not equal its spatial ensemble average. TS-LSI detects blood flow in smaller blood vessels and is less susceptible to stationary-speckle artifacts.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophth. Vis. Sci. 22, 255–259 (1982).
  2. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
    [Crossref] [PubMed]
  3. A. F. Fercher and J. D. Briers, “Flow Visualization by means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  4. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
    [Crossref] [PubMed]
  5. Q. Liu, Z. Wang, and Q.M. Luo, “Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging,” J. Biomed. Opt. 10, 024019 (2005).
    [Crossref] [PubMed]
  6. B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).
    [Crossref] [PubMed]
  7. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
    [Crossref]
  8. A. Serov, W. Steenbergen, and F. de Mul, “Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor,” Opt. Lett. 27, 300–302 (2002).
    [Crossref]
  9. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
    [Crossref] [PubMed]
  10. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31, 1824–1826 (2006).
    [Crossref] [PubMed]
  11. W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
    [PubMed]
  12. Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
    [Crossref] [PubMed]
  13. A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782–9787 (2005).
    [Crossref] [PubMed]
  14. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
    [Crossref]
  15. P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
    [Crossref] [PubMed]
  16. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
    [Crossref] [PubMed]
  17. R. Bonner and R. Nossal, “Model for Laser Doppler Measurements of Blood-Flow in Tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [Crossref] [PubMed]
  18. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
    [Crossref] [PubMed]
  19. J. W. Goodman, Statistical Optics (Wiley series in Pure and Applied Optics, 1985).
  20. C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow,” Invest. Ophthalmol. Visual Sci. 24, 47–51 (1983).
  21. Y. Li, H. Cheng, and T. Q. Duong, “Blood-flow magnetic resonance imaging of the retina,” Neuroimage 39, 1744–1751 (2008).
    [Crossref]
  22. J. W. Goodman, in Laser Speckle and Related Phenomena (Spring-Verlag, 1975).
  23. J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).
    [Crossref]
  24. H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
    [Crossref] [PubMed]

2008 (2)

2007 (3)

H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
[Crossref] [PubMed]

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

2006 (3)

2005 (2)

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782–9787 (2005).
[Crossref] [PubMed]

Q. Liu, Z. Wang, and Q.M. Luo, “Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging,” J. Biomed. Opt. 10, 024019 (2005).
[Crossref] [PubMed]

2004 (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

2003 (1)

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).
[Crossref]

1999 (2)

B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).
[Crossref] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

1983 (1)

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow,” Invest. Ophthalmol. Visual Sci. 24, 47–51 (1983).

1982 (1)

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophth. Vis. Sci. 22, 255–259 (1982).

1981 (2)

A. F. Fercher and J. D. Briers, “Flow Visualization by means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

R. Bonner and R. Nossal, “Model for Laser Doppler Measurements of Blood-Flow in Tissue,” Appl. Opt. 20, 2097–2107 (1981).
[Crossref] [PubMed]

Al-Nashash, H.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Ances, B. M.

B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).
[Crossref] [PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Bonner, R.

Briers, J. D.

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).
[Crossref]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophth. Vis. Sci. 22, 255–259 (1982).

A. F. Fercher and J. D. Briers, “Flow Visualization by means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Buck, A.

Buck, F.

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Chen, S.

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Cheng, H.

Y. Li, H. Cheng, and T. Q. Duong, “Blood-flow magnetic resonance imaging of the retina,” Neuroimage 39, 1744–1751 (2008).
[Crossref]

H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
[Crossref] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Choi, B.

de Mul, F.

Detre, J. A.

B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).
[Crossref] [PubMed]

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Duong, T. Q.

Y. Li, H. Cheng, and T. Q. Duong, “Blood-flow magnetic resonance imaging of the retina,” Neuroimage 39, 1744–1751 (2008).
[Crossref]

H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188–2190 (2007).
[Crossref] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Fercher, A. F.

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophth. Vis. Sci. 22, 255–259 (1982).

A. F. Fercher and J. D. Briers, “Flow Visualization by means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Gong, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, in Laser Speckle and Related Phenomena (Spring-Verlag, 1975).

J. W. Goodman, Statistical Optics (Wiley series in Pure and Applied Optics, 1985).

Greenberg, J. H.

B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).
[Crossref] [PubMed]

Grunwald, J. E.

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow,” Invest. Ophthalmol. Visual Sci. 24, 47–51 (1983).

Guizar-Iturbide, I.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

Kim, M.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Le, T. M.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Li, P.

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

Li, P. C.

Li, Y.

Y. Li, H. Cheng, and T. Q. Duong, “Blood-flow magnetic resonance imaging of the retina,” Neuroimage 39, 1744–1751 (2008).
[Crossref]

Liu, Q.

Q. Liu, Z. Wang, and Q.M. Luo, “Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging,” J. Biomed. Opt. 10, 024019 (2005).
[Crossref] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

Luft, A. R.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Luo, Q.

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

Luo, Q. M.

Luo, Q.M.

Q. Liu, Z. Wang, and Q.M. Luo, “Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging,” J. Biomed. Opt. 10, 024019 (2005).
[Crossref] [PubMed]

Luo, W.

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

Martinez-Niconoff, G.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Nair, G.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Ni, S. L.

Nossal, R.

Olson, D. E.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Ong, S. H.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Pardue, M. T.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Paul, J. S.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

Riva, C. E.

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow,” Invest. Ophthalmol. Visual Sci. 24, 47–51 (1983).

Scheffold, F.

Serov, A.

Sheu, F. S.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow,” Invest. Ophthalmol. Visual Sci. 24, 47–51 (1983).

Steenbergen, W.

Tan, A.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Thule, P. M.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Volker, A.

Volker, A. C.

Walker, T. A.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

Q. Liu, Z. Wang, and Q.M. Luo, “Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging,” J. Biomed. Opt. 10, 024019 (2005).
[Crossref] [PubMed]

W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

Weber, B.

Zakharov, P.

Zeng, S.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

Zeng, S. Q.

Zhang, L.

Appl. Opt. (1)

IEEE Trans. Med. Imaging (1)

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833–842 (2007).
[Crossref]

Invest. Ophth. Vis. Sci. (1)

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophth. Vis. Sci. 22, 255–259 (1982).

Invest. Ophthalmol. Visual Sci. (1)

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow,” Invest. Ophthalmol. Visual Sci. 24, 47–51 (1983).

J. Biomed. Opt. (3)

Q. Liu, Z. Wang, and Q.M. Luo, “Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging,” J. Biomed. Opt. 10, 024019 (2005).
[Crossref] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Neuroimage (2)

B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).
[Crossref] [PubMed]

Y. Li, H. Cheng, and T. Q. Duong, “Blood-flow magnetic resonance imaging of the retina,” Neuroimage 39, 1744–1751 (2008).
[Crossref]

Neurosci. Lett. (1)

Z. Wang, P. Li, W. Luo, S. Chen, and Q. Luo, “Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex,” Neurosci. Lett. 424, 133–138 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow Visualization by means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347–1357 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad Sci USA (1)

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, and T. Q. Duong, “Structural and Functional magnetic resonance imaging reveal multiple layers in retina,” Proc. Natl. Acad Sci USA 103, 17525–17530 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).
[Crossref]

Other (3)

J. W. Goodman, in Laser Speckle and Related Phenomena (Spring-Verlag, 1975).

W. Luo, Z. Wang, P. Li, S. Zeng, and Q. Luo, “A modified mini-stroke model with region-directed reperfusion in rat cortex,” J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

J. W. Goodman, Statistical Optics (Wiley series in Pure and Applied Optics, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Normalized blood flow indices calculated using temporal statistics (TS-LSI) and spatial statistics (SS-LSI) versus input flow velocities. Each data point represents five repeated measurements. Error bars are standard deviations. The linear correlation coefficients were 0.9956 and 0.9832 for TS-LSI and SS-LSI respectively.

Fig. 2.
Fig. 2.

(a). Spatial statistical (SS-LSI) and temporal statistical (TS-LSI) analysis of the retinal blood-flow images associated with air or oxygen breathing and their percent-change images. Blood-flow images are in arbitrary unit. The non-expanded image area is 4.5×4.5 mm. TS-LSI preserves high spatial resolution compared to SS-LSI but has lower signal-to-noise ratio as expected. SS-LSI and TS-LSI were calculated from the same data set of 300 frames. (b) A blood-flow profile across a blood vessel when the animal breathed air (left) or O2 (right).

Fig. 3.
Fig. 3.

(a). Schematic of stationary speckle artifacts. Half of the laser beam that passes through the beam splitter incidents on a static background. Light from the static background is reflected onto the camera and can contaminate the speckle images of interest. (b) Spatial statistical (SSLSI) and (c) temporal statistical (TS-LSI) analysis of retinal blood-flow images obtained with a rough (rough black cloth) or smooth (smooth black paper) surface. Artifacts from the static surface (arrows) and optical fiber ring (arrowheads) were substantial in SS-LSI but were essentially eliminated in TS-LSI. SS-LSI and TS-LSI were calculated from the same data set of 50 frames. Image area is 3.5×3.5 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T τ c = 1 K s 2
1 N t = < I > 2 [ < I 2 > < I > 2 ]
1 N t = I ¯ 2 σ 2 = 1 K t 2

Metrics