Abstract

Temporal-statistical analysis of laser-speckle image (TS-LSI) preserves the original spatial resolution, in contrast to conventional spatialstatistical analysis (SS-LSI). Concerns have been raised regarding the temporal independency of TS-LSI signals and its insensitivity toward stationary-speckle contamination. Our results from flow phantoms and in vivo rat retinas demonstrated that the TS-LSI signals are temporally statistically independent and TS-LSI minimizes stationary-speckle contamination. The latter is because the stationary speckle is “non-random” and thus non-ergodic where the temporal average of stationary speckle needs not equal its spatial ensemble average. TS-LSI detects blood flow in smaller blood vessels and is less susceptible to stationary-speckle artifacts.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophth. Vis. Sci. 22, 255-259(1982).
  2. 2. A. K. Dunn, H. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
    [CrossRef] [PubMed]
  3. A. F. Fercher and J. D. Briers, "Flow Visualization by means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
    [CrossRef]
  4. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
    [CrossRef] [PubMed]
  5. Q. Liu, Z. Wang and Q. M. Luo, "Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging," J. Biomed. Opt. 10, 024019 (2005).
    [CrossRef] [PubMed]
  6. B. M. Ances, J. H. Greenberg and J. A. Detre, "Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex," Neuroimage 10, 716-723 (1999).
    [CrossRef] [PubMed]
  7. J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  8. A. Serov, W. Steenbergen and F. de Mul, "Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor," Opt. Lett. 27, 300-302 (2002).
    [CrossRef]
  9. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
    [CrossRef] [PubMed]
  10. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng and Q. M. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31, 1824-1826 (2006).
    [CrossRef] [PubMed]
  11. W. Luo, Z. Wang, P. Li, S. Zeng and Q. Luo, "A modified mini-stroke model with region-directed reperfusion in rat cortex," J. Cereb. Blood Flow Metab. advance online publication (2007).
    [PubMed]
  12. Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
    [CrossRef] [PubMed]
  13. A. C. Volker, P. Zakharov, B. Weber, F. Buck and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 13, 9782-9787 (2005).
    [CrossRef] [PubMed]
  14. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
    [CrossRef]
  15. P. Zakharov, A. Volker, A. Buck, B. Weber and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31, 3465-3467 (2006).
    [CrossRef] [PubMed]
  16. H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007).
    [CrossRef] [PubMed]
  17. R. Bonner and R. Nossal, "Model for Laser Doppler Measurements of Blood-Flow in Tissue," Appl. Opt. 20, 2097-2107 (1981).
    [CrossRef] [PubMed]
  18. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff and B. Choi, "Impact of velocity distribution assumption on simplified laser speckle imaging equation," Opt. Express 16, 3197-3203 (2008).
    [CrossRef] [PubMed]
  19. J. W. Goodman, Statistical Optics (Wiley series in Pure and Applied Optics, 1985).
  20. C. E. Riva, J. E. Grunwald and S. H. Sinclair, "Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow," Invest. Ophthalmol. Visual Sci. 24, 47-51 (1983).
  21. Y. Li, H. Cheng and T. Q. Duong, "Blood-flow magnetic resonance imaging of the retina," Neuroimage 39, 1744-1751 (2008).
    [CrossRef]
  22. J. W. Goodman, in Laser Speckle and Related Phenomena (Spring-Verlag, 1975).
  23. J. D. Briers, "Time-varying laser speckle for measuring motion and flow," Proc. SPIE 4242, 25-39 (2001).
    [CrossRef]
  24. H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007).
[CrossRef] [PubMed]

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

2006 (3)

2005 (2)

A. C. Volker, P. Zakharov, B. Weber, F. Buck and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 13, 9782-9787 (2005).
[CrossRef] [PubMed]

Q. Liu, Z. Wang and Q. M. Luo, "Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging," J. Biomed. Opt. 10, 024019 (2005).
[CrossRef] [PubMed]

2004 (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

J. D. Briers, "Time-varying laser speckle for measuring motion and flow," Proc. SPIE 4242, 25-39 (2001).
[CrossRef]

2. A. K. Dunn, H. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

1999 (2)

B. M. Ances, J. H. Greenberg and J. A. Detre, "Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex," Neuroimage 10, 716-723 (1999).
[CrossRef] [PubMed]

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

1983 (1)

C. E. Riva, J. E. Grunwald and S. H. Sinclair, "Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow," Invest. Ophthalmol. Visual Sci. 24, 47-51 (1983).

1981 (2)

A. F. Fercher and J. D. Briers, "Flow Visualization by means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

R. Bonner and R. Nossal, "Model for Laser Doppler Measurements of Blood-Flow in Tissue," Appl. Opt. 20, 2097-2107 (1981).
[CrossRef] [PubMed]

Al-Nashash, H.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Ances, B. M.

B. M. Ances, J. H. Greenberg and J. A. Detre, "Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex," Neuroimage 10, 716-723 (1999).
[CrossRef] [PubMed]

Bonner, R.

Briers, J. D.

J. D. Briers, "Time-varying laser speckle for measuring motion and flow," Proc. SPIE 4242, 25-39 (2001).
[CrossRef]

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

A. F. Fercher and J. D. Briers, "Flow Visualization by means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophth. Vis. Sci. 22, 255-259(1982).

Buck, A.

Buck, F.

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Chen, S.

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Cheng, H.

Y. Li, H. Cheng and T. Q. Duong, "Blood-flow magnetic resonance imaging of the retina," Neuroimage 39, 1744-1751 (2008).
[CrossRef]

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007).
[CrossRef] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Choi, B.

de Mul, F.

Detre, J. A.

B. M. Ances, J. H. Greenberg and J. A. Detre, "Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex," Neuroimage 10, 716-723 (1999).
[CrossRef] [PubMed]

Duong, T. Q.

Y. Li, H. Cheng and T. Q. Duong, "Blood-flow magnetic resonance imaging of the retina," Neuroimage 39, 1744-1751 (2008).
[CrossRef]

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007).
[CrossRef] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, "Flow Visualization by means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophth. Vis. Sci. 22, 255-259(1982).

Gong, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Greenberg, J. H.

B. M. Ances, J. H. Greenberg and J. A. Detre, "Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex," Neuroimage 10, 716-723 (1999).
[CrossRef] [PubMed]

Grunwald, J. E.

C. E. Riva, J. E. Grunwald and S. H. Sinclair, "Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow," Invest. Ophthalmol. Visual Sci. 24, 47-51 (1983).

Guizar-Iturbide, I.

He, X. W.

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Kim, M.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Le, T. M.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Li, P.

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

Li, P. C.

Li, Y.

Y. Li, H. Cheng and T. Q. Duong, "Blood-flow magnetic resonance imaging of the retina," Neuroimage 39, 1744-1751 (2008).
[CrossRef]

Liu, Q.

Q. Liu, Z. Wang and Q. M. Luo, "Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging," J. Biomed. Opt. 10, 024019 (2005).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Luft, A. R.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Luo, Q.

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Luo, Q. M.

Luo, Q.M.

Q. Liu, Z. Wang and Q. M. Luo, "Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging," J. Biomed. Opt. 10, 024019 (2005).
[CrossRef] [PubMed]

Luo, W.

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

Martinez-Niconoff, G.

Nair, G.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Ni, S. L.

Nossal, R.

Olson, D. E.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Ong, S. H.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Pardue, M. T.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Paul, J. S.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Richards, G.

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Riva, C. E.

C. E. Riva, J. E. Grunwald and S. H. Sinclair, "Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow," Invest. Ophthalmol. Visual Sci. 24, 47-51 (1983).

Scheffold, F.

Serov, A.

Sheu, F. S.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Sinclair, S. H.

C. E. Riva, J. E. Grunwald and S. H. Sinclair, "Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow," Invest. Ophthalmol. Visual Sci. 24, 47-51 (1983).

Steenbergen, W.

Tan, A.

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Thule, P. M.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Volker, A.

Volker, A. C.

Walker, T. A.

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

Q. Liu, Z. Wang and Q. M. Luo, "Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging," J. Biomed. Opt. 10, 024019 (2005).
[CrossRef] [PubMed]

Weber, B.

Zakharov, P.

Zeng, S.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Zeng, S. Q.

Zhang, L.

Appl. Opt. (1)

IEEE Trans. Med. Imaging (1)

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu and S. H. Ong, "New insights into image processing of cortical blood flow monitors using laser speckle imaging," IEEE Trans. Med. Imaging 26, 833- 842 (2007).
[CrossRef]

Invest. Ophth. Vis. Sci. (1)

J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophth. Vis. Sci. 22, 255-259(1982).

Invest. Ophthalmol. Visual Sci. (1)

C. E. Riva, J. E. Grunwald and S. H. Sinclair, "Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow," Invest. Ophthalmol. Visual Sci. 24, 47-51 (1983).

J. Biomed. Opt. (3)

Q. Liu, Z. Wang and Q. M. Luo, "Temporal clustering analysis of cerebral blood flow activation maps measured by laser speckle contrast imaging," J. Biomed. Opt. 10, 024019 (2005).
[CrossRef] [PubMed]

J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

2. A. K. Dunn, H. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Neuroimage (2)

B. M. Ances, J. H. Greenberg and J. A. Detre, "Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex," Neuroimage 10, 716-723 (1999).
[CrossRef] [PubMed]

Y. Li, H. Cheng and T. Q. Duong, "Blood-flow magnetic resonance imaging of the retina," Neuroimage 39, 1744-1751 (2008).
[CrossRef]

Neurosci. Lett. (1)

Z. Wang, P. Li, W. Luo, S. Chen and Q. Luo, "Peri-infarct temporal changes in intrinsic optical signal during spreading depression in focal ischemic rat cortex," Neurosci. Lett. 424, 133-138 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, "Flow Visualization by means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad Sci USA (1)

H. Cheng, G. Nair, T. A. Walker, M. Kim, M. T. Pardue, P. M. Thule, P. M. Thule, D. E. Olson, T. Q. Duong, "Structural and Functional magnetic resonance imaging reveal multiple layers in retina," Proc. Natl. Acad. Sci. USA 103, 17525-17530 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. D. Briers, "Time-varying laser speckle for measuring motion and flow," Proc. SPIE 4242, 25-39 (2001).
[CrossRef]

Other (3)

J. W. Goodman, in Laser Speckle and Related Phenomena (Spring-Verlag, 1975).

J. W. Goodman, Statistical Optics (Wiley series in Pure and Applied Optics, 1985).

W. Luo, Z. Wang, P. Li, S. Zeng and Q. Luo, "A modified mini-stroke model with region-directed reperfusion in rat cortex," J. Cereb. Blood Flow Metab. advance online publication (2007).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Normalized blood flow indices calculated using temporal statistics (TS-LSI) and spatial statistics (SS-LSI) versus input flow velocities. Each data point represents five repeated measurements. Error bars are standard deviations. The linear correlation coefficients were 0.9956 and 0.9832 for TS-LSI and SS-LSI respectively.

Fig. 2.
Fig. 2.

(a). Spatial statistical (SS-LSI) and temporal statistical (TS-LSI) analysis of the retinal blood-flow images associated with air or oxygen breathing and their percent-change images. Blood-flow images are in arbitrary unit. The non-expanded image area is 4.5×4.5 mm. TS-LSI preserves high spatial resolution compared to SS-LSI but has lower signal-to-noise ratio as expected. SS-LSI and TS-LSI were calculated from the same data set of 300 frames. (b) A blood-flow profile across a blood vessel when the animal breathed air (left) or O2 (right).

Fig. 3.
Fig. 3.

(a). Schematic of stationary speckle artifacts. Half of the laser beam that passes through the beam splitter incidents on a static background. Light from the static background is reflected onto the camera and can contaminate the speckle images of interest. (b) Spatial statistical (SSLSI) and (c) temporal statistical (TS-LSI) analysis of retinal blood-flow images obtained with a rough (rough black cloth) or smooth (smooth black paper) surface. Artifacts from the static surface (arrows) and optical fiber ring (arrowheads) were substantial in SS-LSI but were essentially eliminated in TS-LSI. SS-LSI and TS-LSI were calculated from the same data set of 50 frames. Image area is 3.5×3.5 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T τ c = 1 K s 2
1 N t = < I > 2 [ < I 2 > < I > 2 ]
1 N t = I ¯ 2 σ 2 = 1 K t 2

Metrics