Abstract

Supercontinuum radiation sources are attractive for spectroscopic applications owing to their broad wavelength coverage, which enables spectral signatures of multiple species to be detected simultaneously. Here we report the first use of a supercontinuum radiation source for broadband trace gas detection using a cavity enhanced absorption technique. Spectra were recorded at bandwidths of up to 100 nm, encompassing multiple absorption bands of H2O, O2 and O2-O2. The same instrument was also used to make quantitative measurements of NO2 and NO3. For NO3 a detection limit of 3 parts-per-trillion in 2 s was achieved, which corresponds to an effective 3σ sensitivity of 2.4×10-9 cm-1Hz-1/2. Our results demonstrate that a conceptually simple and robust instrument is capable of highly sensitive broadband absorption measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  2. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
    [CrossRef] [PubMed]
  3. M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
    [CrossRef] [PubMed]
  4. A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
    [CrossRef] [PubMed]
  5. R. R. Alfano, The Supercontinuum Laser Source, 2nd Edition (Springer, New York, 2006).
    [PubMed]
  6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  7. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
    [CrossRef]
  8. S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75, 799-802 (2002).
    [CrossRef]
  9. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15, 11385-11395 (2007).
    [CrossRef] [PubMed]
  10. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006).
    [CrossRef] [PubMed]
  11. R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
    [CrossRef]
  12. A. O�??Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
    [CrossRef]
  13. J. Ye and J. L. Hall, "Ultrasensitive detection in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998).
    [CrossRef]
  14. J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt power light power," Phys. Rev A 61, 061802 (2000).
    [CrossRef]
  15. S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003).
    [CrossRef] [PubMed]
  16. J. J. Scherer, J. B. Paul, H. Jiao, and A. O'Keefe, "Broadband ringdown spectral photography," Appl. Opt. 40, 6725-6732 (2001).
    [CrossRef]
  17. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
    [CrossRef]
  18. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
    [CrossRef] [PubMed]
  19. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16, 2387-2397 (2008).
    [CrossRef] [PubMed]
  20. T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10, 1033-1042 (2002).
    [PubMed]
  21. T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
    [CrossRef]
  22. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
    [CrossRef]
  23. S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003).
    [CrossRef]
  24. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
    [CrossRef] [PubMed]
  25. S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
    [CrossRef]
  26. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
    [CrossRef]
  27. M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
    [CrossRef]
  28. J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006).
    [CrossRef] [PubMed]
  29. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
    [CrossRef] [PubMed]
  30. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
    [CrossRef]
  31. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
    [CrossRef]
  32. J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003).
    [CrossRef]
  33. U. Platt, "Modern methods of the measurement of atmospheric trace gases," Phys. Chem. Chem. Phys. 24, 5409-5415 (1999).
    [CrossRef]
  34. E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
    [CrossRef]
  35. W. R. Simpson, "Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5)," Rev. Sci. Instrum. 74, 3442-3452 (2003).
    [CrossRef]
  36. J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, "Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection," Appl. Opt. 44, 7239-7242 (2005).
    [CrossRef] [PubMed]
  37. W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
    [CrossRef]
  38. C. Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem. 29, 867-874 (2005).
    [CrossRef]
  39. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
    [CrossRef] [PubMed]
  40. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, "Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser," Opt. Express 15, 16540-16545 (2007).
    [CrossRef] [PubMed]
  41. A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007)
    [CrossRef] [PubMed]
  42. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]
  43. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
    [CrossRef] [PubMed]
  44. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005).
    [CrossRef]
  45. M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
    [CrossRef] [PubMed]

2008

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16, 2387-2397 (2008).
[CrossRef] [PubMed]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

2007

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15, 11385-11395 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, "Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser," Opt. Express 15, 16540-16545 (2007).
[CrossRef] [PubMed]

A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007)
[CrossRef] [PubMed]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
[CrossRef] [PubMed]

2006

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

2005

J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, "Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection," Appl. Opt. 44, 7239-7242 (2005).
[CrossRef] [PubMed]

C. Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem. 29, 867-874 (2005).
[CrossRef]

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005).
[CrossRef]

2004

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

2003

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

W. R. Simpson, "Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5)," Rev. Sci. Instrum. 74, 3442-3452 (2003).
[CrossRef]

J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003).
[CrossRef]

S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

2002

T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10, 1033-1042 (2002).
[PubMed]

Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75, 799-802 (2002).
[CrossRef]

2001

J. J. Scherer, J. B. Paul, H. Jiao, and A. O'Keefe, "Broadband ringdown spectral photography," Appl. Opt. 40, 6725-6732 (2001).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

2000

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt power light power," Phys. Rev A 61, 061802 (2000).
[CrossRef]

1999

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

U. Platt, "Modern methods of the measurement of atmospheric trace gases," Phys. Chem. Chem. Phys. 24, 5409-5415 (1999).
[CrossRef]

1998

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
[CrossRef]

J. Ye and J. L. Hall, "Ultrasensitive detection in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998).
[CrossRef]

1994

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

1990

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
[CrossRef]

1988

A. O�??Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Ahnelt, P. K.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Allwine, E. J.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Apodaca, R. L.

Ayers, J. D.

Baer, D. S.

Ball, S. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Balslev-Clausen, D.

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
[CrossRef]

Bhushan, A. S.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Bizheva, K.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Blanco, S.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Boogaarts, M. G. H.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Brown, S. S.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Brus, L. E.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Budka, H.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Burkholder, J. B.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
[CrossRef]

Cardenas, B.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Carleer, M.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Cermak, P.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

Chuang, C.-C.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Ciciora, S. J.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Colin, R.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Coppinger, F.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

Coquart, B.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Cowey, A.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Deacon, D. A. G.

A. O�??Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Drexler, W.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Dubé, W. P.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Dunlea, E. J.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
[CrossRef]

Eslami, E.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

Fally, S.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Fellows, C. E.

J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003).
[CrossRef]

Fiedler, S. E.

A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007)
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005).
[CrossRef]

Fiedler, S.E.

S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

Flaud, P. -M.

J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003).
[CrossRef]

Freeman, M. J.

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Gaffney, J. S.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

George, A. K.

Gherman, T.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10, 1033-1042 (2002).
[PubMed]

Gohle, C.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

Greenblatt, G. D.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
[CrossRef]

Grutter, M.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Guelachvili, G.

Hall, J. L.

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt power light power," Phys. Rev A 61, 061802 (2000).
[CrossRef]

J. Ye and J. L. Hall, "Ultrasensitive detection in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998).
[CrossRef]

Hänsch, T.

Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Hänsch, T. W.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

Heinz, T. F.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Hermann, B.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Hermans, C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Herndon, S. C.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005).
[CrossRef]

S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Hone, J.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Huang, L.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Hudson, D. D.

Hult, J.

Islam, M. N.

Jalali, B.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

Jenouvrier, A.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Jiao, H.

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Jones, R. L.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Jongma, R. T.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Kaminski, C. F.

Kasparian, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Kassi, S.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

Kelkar, P. V.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

Kirchner, M. S.

Knight, J. C.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Kolb, C. E.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Kudlinski, A.

Kulkarni, O. P.

Kumar, M.

Lamb, B. K.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Langridge, J. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Lasri, J.

Le, T.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Mackenzie, S. R.

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

Macpherson, J. V.

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

Mandon, J.

Marley, N. A.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Marquez, C.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Mazé, G.

Mazurenka, M.

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

McLaughlin, R. J.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Méjean, G.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Menzel, R.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Mérienne, M. F.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Molina, L. T.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Molina, M. J.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Moll, K. D.

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Morgan, J. E.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Mysyrowicz, A.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Nelson, D. D.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Norton, E. G.

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Nunley, M. R.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

O???Brien, S. P.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

O???Keefe, A.

A. O�??Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

O'Keefe, A.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Orlando, J. J.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
[CrossRef]

Orphal, J.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007)
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003).
[CrossRef]

Osthoff, H. D.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Paris, M. W.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Parker, D. H.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Paul, J. B.

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
[CrossRef]

Picque, N.

Platt, U.

U. Platt, "Modern methods of the measurement of atmospheric trace gases," Phys. Chem. Chem. Phys. 24, 5409-5415 (1999).
[CrossRef]

Popov, S. V.

Poulain, M.

Považay, B.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Povey, I. M.

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Preusser, M.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Ramos Villegas, C. R.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Ravishankara, A. R.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
[CrossRef]

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Reitsamer, H.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Retama, A.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Romanini, D.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10, 1033-1042 (2002).
[PubMed]

Rulkov, A. B.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Ruth, A. A.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007)
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005).
[CrossRef]

S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

Sadeghi, N.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Salmon, E.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

San Martini, F.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Sanders, S. T.

S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75, 799-802 (2002).
[CrossRef]

Sattmann, H.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Scherer, J. J.

Schliesser, A.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

Schubert, C.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Seefeld, M.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Sfeir, M. Y.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Sheehy, P. M.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Shorter, J. H.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Simon, P. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Simpson, W. R.

J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, "Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection," Appl. Opt. 44, 7239-7242 (2005).
[CrossRef] [PubMed]

W. R. Simpson, "Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5)," Rev. Sci. Instrum. 74, 3442-3452 (2003).
[CrossRef]

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Sorokin, E.

Sorokina, I. T.

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

Stingl, A.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Taylor, J. R.

Terry, F. L.

Thorpe, M. J.

Travers, J. C.

Triki, M.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

Udem, T.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

Udem, Th.

Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Unterhuber, A.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Unwin, P. R.

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

Vallance, C.

C. Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem. 29, 867-874 (2005).
[CrossRef]

Vandaele, A. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Vaughan, S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

Venables, D. S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

Vial, J-C.

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

Volkamer, R. M.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Wang, F.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

Watt, R. S.

Wenger, J. C.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

Wilkins, L.

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Wodtke, A. M.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Wolf, J.-P.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Wormhoudt, J. C.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Wöste, L.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Xia, C.

Ye, J.

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Zahniser, M. S.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Anal. Chem.

M. Mazurenka, L. Wilkins, J. V. Macpherson, P. R. Unwin, and S. R. Mackenzie, "Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell," Anal. Chem. 78, 6833-6839 (2006).
[CrossRef] [PubMed]

Analyst

J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131, 916-922 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

S. T. Sanders, "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy," Appl. Phys. B 75, 799-802 (2002).
[CrossRef]

Atmos. Chem. Phys.

E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Gaffney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. Ramos Villegas, C. E. Kolb, L. T. Molina, and M. J. Molina, "Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment," Atmos. Chem. Phys. 7, 2691-2704 (2007).
[CrossRef]

Chem. Phys. Lett.

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, "Coherent cavity ringdown spectroscopy," Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

S.E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

Chem. Rev.

S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

Electron. Lett.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

Environ. Sci. Technol.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

J. Geophy.Res.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, "Absorption measurements of oxygen between 330nm and 1140nm," J. Geophy.Res. 95, 18577-18582 (1990).
[CrossRef]

J. Geophys. Res.

J. Orphal, C. E. Fellows, and P. -M. Flaud, "The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy," J. Geophys. Res. 108, 4077 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37, 2408-2415 (2004).
[CrossRef]

Nature

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

New J. Chem.

C. Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem. 29, 867-874 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

U. Platt, "Modern methods of the measurement of atmospheric trace gases," Phys. Chem. Chem. Phys. 24, 5409-5415 (1999).
[CrossRef]

Phys. Med. Biol.

A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, "Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography," Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Phys. Rev A

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt power light power," Phys. Rev A 61, 061802 (2000).
[CrossRef]

Phys. Rev. Lett.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra," Phys. Rev. Lett. 99, 263902 (2007).
[CrossRef]

Quant. Spectrosc. Radiat. Transfer.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer. 59, 171-184 (1998).
[CrossRef]

Rev. Sci. Instrum.

W. R. Simpson, "Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5)," Rev. Sci. Instrum. 74, 3442-3452 (2003).
[CrossRef]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, "Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy," Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
[CrossRef]

A. O�??Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Rev. Sci. Instum.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids" Rev. Sci. Instum. 76, 023107 (2005).
[CrossRef]

Science

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O�??Brien, T. F. Heinz, and L. E. Brus, "Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering," Science 306, 1540-1543 (2004).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Other

R. R. Alfano, The Supercontinuum Laser Source, 2nd Edition (Springer, New York, 2006).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up for broadband SC-CEAS. For spectral filtering a combination of a beamsplitter, a hot mirror and a broadband interference filter was employed. Beam steering mirrors used to direct the filtered SC radiation into the cavity are not shown.

Fig. 2.
Fig. 2.

(a) Measured mirror reflectivity curve (blue) and filtered SC output (red), (b) cavity throughput corresponding to the empty cavity (N2 flushed) and filled cavity (humidified air).

Fig. 3.
Fig. 3.

Broadband SC-CEAS spectrum of synthetic air humidified to 77% RH at 23°C. The spectrum captures 100 nm of spectral information at a resolution of 0.3 nm FWHM and was acquired in a single measurement with an integration time of 2 s. The baseline region of the spectrum where no absorption features are found (663–683 nm) has a standard deviation of 1.6×10-9 cm-1.

Fig. 4.
Fig. 4.

High resolution SC-CEAS spectra of the 4ν and 4ν+δ polyad vibrational overtones of water vapour and the oxygen B band. The spectra were acquired in an integration time of 2 s at a resolution of 0.1 nm FWHM. The baseline of the O2 spectrum (685–686.5 nm) has a standard deviation of 4.7×10-9 cm-1.

Fig. 5.
Fig. 5.

SC-CEAS spectra of a) NO2 and b) NO3. Each spectrum (red) was fitted (black) to retrieve the respective absorber concentrations shown. The residuals (blue) have standard deviations of 3.5×10-9 cm-1 and 3.2×10-9 cm-1 for NO2 and NO3 respectively. Spectra were acquired at a resolution of 0.1 nm FWHM in a 2 s integration time.

Fig. 6.
Fig. 6.

Time series of NO3 concentrations retrieved from consecutive 2 s spectra characteristic of the instrument’s baseline noise level (upper panel). The standard deviation of the NO3 concentration distribution (lower panel) indicates a 3σ detection limit of 3 pptv.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = ( I 0 ( λ ) I ( λ ) 1 ) 1 R ( λ ) d

Metrics