Abstract

We demonstrate a terahertz (THz) beam steering method using difference frequency generation that is based on the principle of phased array antennas. A strip-line photoconductive antenna was illuminated by two spatially dispersed beams produced from an ultrafast laser. THz radiation with a bandwidth of 65 GHz was generated from the overlapping area of the two beams, between which the frequency difference was approximately constant. We confirmed that the THz beam can be steered by tilting one of the incident pump beams so as to change their relative phase relation. The steering range of the THz beam was 29 degrees when the angle between the incident pump beams was only varied within a range of 0.155 degrees, that is, 187 times less. In addition, by laterally shifting one of the pump beams, the frequency of the THz radiation could be tuned from 0.3 to 1.7 THz. This technique can be applied to high-speed terahertz imaging and spectroscopy systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995).
    [CrossRef] [PubMed]
  2. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, "Terahertz imaging system based on backward-wave oscillator," Appl. Opt. 43, 5637-5646 (2004).
    [CrossRef] [PubMed]
  3. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, "Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects," Opt. Express 15, 6478-6483 (2007).
    [CrossRef] [PubMed]
  4. I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
    [CrossRef]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003.
    [CrossRef] [PubMed]
  6. M. J. Fitch and R. Osiander, "Terahertz waves for communications and sensing," Johns Hopkins APL Technical Digest 25, 348-355 (2004)
  7. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
    [CrossRef]
  8. B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
    [CrossRef]
  9. N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
    [CrossRef]
  10. T. D. Drysdale, E. D. Walsby, and D. R. S. Cumming, "Measured and simulated performance of a ceramic micromechanical beam steering device at 94 GHz," Appl. Opt. 47, 2382-2385 (2008)
    [CrossRef] [PubMed]
  11. R. J. Mailloux, Phased Array Antenna Handbook (Artech house, 2005), Chap. 1.
  12. Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).
  13. I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
    [CrossRef]
  14. E. R. Brown, F. W. Smith, and K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
    [CrossRef]
  15. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, "Analysis and design of a coutinuous-wave terahertz photoconductive photomixer array source," IEEE Trans. Antennas Propag. 53, 4044-4050 (2005).
    [CrossRef]
  16. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt. 36, 7853-7859 (1997).
    [CrossRef]
  17. J. O'Hara and D. Grischkowsky, "Quasi-optic synthetic phased-array terahertz," J. Opt. Soc. Am. B 21, 1178-1191 (2004).
    [CrossRef]
  18. D. Richardson, "Diffraction Gratings," in Applied Optics and Optical Engineering5, R. Kingslake, ed., (Academic Press, New York, 1969).
  19. N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222-224 (1991).
    [CrossRef]
  20. J. Hebling, G Almási, I. Z. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large-area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
    [PubMed]
  21. N. Shimizu and T. Nagatsuma, "Photodiode-integrated microstrip antenna array for subterahertz radiation," IEEE. Photon. Technol. Lett. 18, 743-745 (2006).
    [CrossRef]
  22. C. Weiss, G. Torosyan, J.-P. Meyn, T. Wallenstein, R. Beigang, and Y. Avetisyan, "Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate," Opt. Express 8, 497-502 (2001).
    [CrossRef] [PubMed]
  23. A. Alexiou and M. Haardt, "Smart antenna technologies for future wireless systems: trends and challenges," IEEE Comm. Magazine 42, 90-97 (2004).
    [CrossRef]

2008

2007

2006

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

N. Shimizu and T. Nagatsuma, "Photodiode-integrated microstrip antenna array for subterahertz radiation," IEEE. Photon. Technol. Lett. 18, 743-745 (2006).
[CrossRef]

2005

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, "Analysis and design of a coutinuous-wave terahertz photoconductive photomixer array source," IEEE Trans. Antennas Propag. 53, 4044-4050 (2005).
[CrossRef]

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

2004

M. J. Fitch and R. Osiander, "Terahertz waves for communications and sensing," Johns Hopkins APL Technical Digest 25, 348-355 (2004)

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

A. Alexiou and M. Haardt, "Smart antenna technologies for future wireless systems: trends and challenges," IEEE Comm. Magazine 42, 90-97 (2004).
[CrossRef]

J. O'Hara and D. Grischkowsky, "Quasi-optic synthetic phased-array terahertz," J. Opt. Soc. Am. B 21, 1178-1191 (2004).
[CrossRef]

A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, "Terahertz imaging system based on backward-wave oscillator," Appl. Opt. 43, 5637-5646 (2004).
[CrossRef] [PubMed]

2003

2002

2001

1997

1995

B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995).
[CrossRef] [PubMed]

Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).

1993

E. R. Brown, F. W. Smith, and K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
[CrossRef]

1992

N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
[CrossRef]

1991

N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222-224 (1991).
[CrossRef]

1990

B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Alexiou, A.

A. Alexiou and M. Haardt, "Smart antenna technologies for future wireless systems: trends and challenges," IEEE Comm. Magazine 42, 90-97 (2004).
[CrossRef]

Almási, G

Auston, D. H.

N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
[CrossRef]

B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Avetisyan, Y.

Baker, C.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Beigang, R.

Brown, E. R.

E. R. Brown, F. W. Smith, and K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
[CrossRef]

Chicklis, E. P.

Chojo, W.

Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).

Cole, B. E.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Creeden, D.

Cumming, D. R. S.

Darrow, J. T.

B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Davies, A. G.

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Dobroiu, A.

Drysdale, T. D.

Evans, M. J.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Fitch, M. J.

M. J. Fitch and R. Osiander, "Terahertz waves for communications and sensing," Johns Hopkins APL Technical Digest 25, 348-355 (2004)

Froberg, N. M.

N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
[CrossRef]

Fujise, M.

Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).

Gerlach, K.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Gregory, I. S.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Grischkowsky, D.

J. O'Hara and D. Grischkowsky, "Quasi-optic synthetic phased-array terahertz," J. Opt. Soc. Am. B 21, 1178-1191 (2004).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222-224 (1991).
[CrossRef]

Haardt, M.

A. Alexiou and M. Haardt, "Smart antenna technologies for future wireless systems: trends and challenges," IEEE Comm. Magazine 42, 90-97 (2004).
[CrossRef]

Hebling, J.

Hu, B. B.

B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995).
[CrossRef] [PubMed]

B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Inoue, H.

Kamiya, Y.

Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222-224 (1991).
[CrossRef]

Kawase, K.

Ketteridge, P. A.

Koch, M.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Komiak, J. J.

Kozma, I. Z.

Krumbholz, N.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Kuhl, J.

Kurner, T.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Linfied, E. H.

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Mansour, R. R.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, "Analysis and design of a coutinuous-wave terahertz photoconductive photomixer array source," IEEE Trans. Antennas Propag. 53, 4044-4050 (2005).
[CrossRef]

Matsuura, S.

McCarthy, J. C.

McIntosh, K. A.

E. R. Brown, F. W. Smith, and K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
[CrossRef]

Meyn, J.-P.

Missous, M.

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Mittleman, D.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Morita, Y.

Murakami, Y.

Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).

Nagatsuma, T.

N. Shimizu and T. Nagatsuma, "Photodiode-integrated microstrip antenna array for subterahertz radiation," IEEE. Photon. Technol. Lett. 18, 743-745 (2006).
[CrossRef]

Nakashima, S.

Nu, B. B.

N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
[CrossRef]

Nuss, M. C.

Ogawa, Y.

O'Hara, J.

Ohshima, Y. N.

Osiander, R.

M. J. Fitch and R. Osiander, "Terahertz waves for communications and sensing," Johns Hopkins APL Technical Digest 25, 348-355 (2004)

Otani, C.

Piesiewicz, R.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Rutz, F.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

Saeedkia, D.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, "Analysis and design of a coutinuous-wave terahertz photoconductive photomixer array source," IEEE Trans. Antennas Propag. 53, 4044-4050 (2005).
[CrossRef]

Safavi-Naeini, S.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, "Analysis and design of a coutinuous-wave terahertz photoconductive photomixer array source," IEEE Trans. Antennas Propag. 53, 4044-4050 (2005).
[CrossRef]

Sakai, K.

Schunemann, P. G.

Shimizu, N.

N. Shimizu and T. Nagatsuma, "Photodiode-integrated microstrip antenna array for subterahertz radiation," IEEE. Photon. Technol. Lett. 18, 743-745 (2006).
[CrossRef]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
[CrossRef]

Southward, T.

Tani, M.

Torosyan, G.

Tribe, W. R.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

Wallenstein, T.

Walsby, E. D.

Watanabe, Y.

Weiss, C.

Yamashita, M.

Zhang, X. -C.

N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
[CrossRef]

B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222-224 (1991).
[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006)
[CrossRef]

B. B. Hu, J. T. Darrow, X. -C. Zhang, and D. H. Auston, "Optically steerable photoconducting antennas," Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, "Continuous-wave terahertz system with a 60 dB dynamic range," Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfied, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett. 85, 1622-1624 (2004).
[CrossRef]

E

Y. Kamiya, Y. Murakami, W. Chojo, and M. Fujise, "An electro-optic BFN for array antenna beam forming," IEICE Trans. Electron.E 78-C, 1090-1094 (1995).

IEEE Comm. Magazine

A. Alexiou and M. Haardt, "Smart antenna technologies for future wireless systems: trends and challenges," IEEE Comm. Magazine 42, 90-97 (2004).
[CrossRef]

IEEE J. Quantum Electron.

N. M. Froberg, B. B. Nu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation from a photoconducting antenna array," IEEE J. Quantum Electron. 28, 2291-2301 (1992).
[CrossRef]

IEEE Trans. Antennas Propag.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, "Analysis and design of a coutinuous-wave terahertz photoconductive photomixer array source," IEEE Trans. Antennas Propag. 53, 4044-4050 (2005).
[CrossRef]

IEEE. Photon. Technol. Lett.

N. Shimizu and T. Nagatsuma, "Photodiode-integrated microstrip antenna array for subterahertz radiation," IEEE. Photon. Technol. Lett. 18, 743-745 (2006).
[CrossRef]

J. Appl. Phys.

E. R. Brown, F. W. Smith, and K. A. McIntosh, "Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors," J. Appl. Phys. 73, 1480-1484 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Johns Hopkins APL Technical Digest

M. J. Fitch and R. Osiander, "Terahertz waves for communications and sensing," Johns Hopkins APL Technical Digest 25, 348-355 (2004)

Opt. Express

Opt. Lett.

Other

D. Richardson, "Diffraction Gratings," in Applied Optics and Optical Engineering5, R. Kingslake, ed., (Academic Press, New York, 1969).

R. J. Mailloux, Phased Array Antenna Handbook (Artech house, 2005), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Conventional microwave phased array antenna and (b) the proposed method of THz beam steering. The wavefront is tilted by changing the direction of one laser beam; this plays the same role as the array of variable phase shifters in (a).

Fig. 2.
Fig. 2.

Principles of generating monochromatic THz radiation and its frequency tuning, (a) a spatially dispersed beam produced from an ultrafast laser, (b) overlapping two spatially dispersed beams with a relative shift, for difference frequency generation, (c) tuning to a lower frequency by shifting one of the beams, and (d) tuning to higher frequency.

Fig. 3.
Fig. 3.

Combination of the ideas shown in Fig. 1(b) and Fig. 2(b). (a) Illumination of a strip-line photoconductive antenna with spatially dispersed beams, and (b) tilting one of the incident beams for THz beam steering. And also the frequency can be tuned by shifting one of the beams.

Fig. 4.
Fig. 4.

Experimental setup for both THz beam steering and frequency tuning. The dashed lines show the optical paths for the case where the two pump beams are superimposed without any shift.

Fig. 5.
Fig. 5.

(a). The spectral distribution of the spatially dispersed beams for the generation with a frequency of 0.7 THz measured with an optical spectrum analyzer, (b) The corresponding frequency difference.

Fig. 6.
Fig. 6.

(a). Typical waveform of the emitted THz radiation and (b) its spectrum given by the fast Fourier transform in case of the generation at 0.6 THz.

Fig. 7.
Fig. 7.

(a). Normalized THz beam patterns for different incident angles of one pump beam, and (b) the relation between the incident angle of the pump beams and THz radiation angles.

Fig. 8.
Fig. 8.

(a). Spectra of the THz radiation for different relative positions of the pump beams and (b) the center frequency as a function of the beam shift.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( E 1 + E 2 ) 2 = [ E 1 cos ω 1 t + E 2 cos ( ω 2 t + Δ ϕ ) ] 2
= 1 2 ( E 1 2 + E 2 2 )
+ [ 1 2 E 1 2 cos 2 ω 1 t + 1 2 E 2 2 cos ( 2 ω 2 t + Δ ϕ ) ]
+ E 1 E 2 2 cos [ ( ω 1 + ω 2 ) t + Δ ϕ ]
+ E 1 E 2 2 cos [ ( ω 1 ω 2 ) t Δ ϕ ]
E T = E 1 E 2 2 cos ( ω T t Δ ϕ )
Δ ϕ i ( x ) = k i x sin θ i
ϕ T ( x ) = k T x sin θ T
sin θ T = k i k T sin θ i
Δ ϕ is ( x ) = k i ( x ) x sin θ i
λ Δ λ = m N

Metrics