Abstract

We demonstrate simultaneous pulse-shaping at different ports of a rapidly tunable wavelength selective switch at a base rate of 40 GHz, based on Fourier-domain pulse shaping. Various pulse bursts are generated and accurately characterized with a linear spectrographic method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  2. J. Azaña, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490-1498 (2003).
    [CrossRef]
  3. J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, and S. LaRochelle, "Generation of a 100-GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 413-415 (2003).
    [CrossRef]
  4. J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L. R. Chen, B. J. Eggleton, and J. Azaña, "Generation of a 4 �? 100 GHz Pulse-Train From a Single-Wavelength 10-GHz Mode-Locked Laser Using Superimposed Fiber Bragg Gratings and Nonlinear Conversion," J. Lightwave Technol. 24, 2091-2099 (2006).
    [CrossRef]
  5. J. A. Bolger, I. C. M. Littler, and B. J. Eggleton, "Optimisation of superimposed chirped fibre Bragg gratings for the generation of ultra-high speed optical pulse bursts," Opt. Commun. 271, 524-531 (2007).
    [CrossRef]
  6. G.-H. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper," J. Lightwave Technol. 23, 3916-3923 (2005).
    [CrossRef]
  7. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping for optical arbitrary pulse-train generation," J. Opt. Soc. Am. B 24, 2124-2128 (2007).
    [CrossRef]
  8. D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
    [CrossRef]
  9. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett 30, 1557-1559 (2005).
    [CrossRef] [PubMed]
  10. C. Dorrer and I. Kang, "Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms," Opt. Lett. 27, 1315-1317 (2002).
    [CrossRef]
  11. B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
    [CrossRef]
  12. C. Dorrer and I. Kang, "Linear self-referencing techniques for short-optical-pulse characterization," J. Opt. Soc. Am. B 25, A1-A12 (2008).
    [CrossRef]
  13. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B.J. Eggleton, "Dispersion trimming in a reconfigurable wavelength selective switch," J. Lightwave Technol. 26, 73-78 (2008).
    [CrossRef]
  14. T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
    [CrossRef]

2008

2007

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping for optical arbitrary pulse-train generation," J. Opt. Soc. Am. B 24, 2124-2128 (2007).
[CrossRef]

J. A. Bolger, I. C. M. Littler, and B. J. Eggleton, "Optimisation of superimposed chirped fibre Bragg gratings for the generation of ultra-high speed optical pulse bursts," Opt. Commun. 271, 524-531 (2007).
[CrossRef]

2006

2005

G.-H. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper," J. Lightwave Technol. 23, 3916-3923 (2005).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett 30, 1557-1559 (2005).
[CrossRef] [PubMed]

B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

2003

J. Azaña, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490-1498 (2003).
[CrossRef]

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, and S. LaRochelle, "Generation of a 100-GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 413-415 (2003).
[CrossRef]

2002

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

C. Dorrer and I. Kang, "Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms," Opt. Lett. 27, 1315-1317 (2002).
[CrossRef]

2001

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

2000

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Abakoumov, D.

Azaña, J.

Baxter, G.

Bolger, J.

Bolger, J. A.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B.J. Eggleton, "Dispersion trimming in a reconfigurable wavelength selective switch," J. Lightwave Technol. 26, 73-78 (2008).
[CrossRef]

J. A. Bolger, I. C. M. Littler, and B. J. Eggleton, "Optimisation of superimposed chirped fibre Bragg gratings for the generation of ultra-high speed optical pulse bursts," Opt. Commun. 271, 524-531 (2007).
[CrossRef]

Chen, L. R.

Dorrer, C.

Eggleton, B. J.

Eggleton, B.J.

Frisken, S.

Futami, F.

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

Huang, C.-B.

Ishii, M.

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

Jiang, Z.

Kamei, S.

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

Kang, I.

Kikuchi, K.

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

Kockaert, P.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, and S. LaRochelle, "Generation of a 100-GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 413-415 (2003).
[CrossRef]

J. Azaña, R. Slavik, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490-1498 (2003).
[CrossRef]

LaRochelle, S.

Leaird, D. E.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping for optical arbitrary pulse-train generation," J. Opt. Soc. Am. B 24, 2124-2128 (2007).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett 30, 1557-1559 (2005).
[CrossRef] [PubMed]

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

Lee, G.-H.

Littler, I. C. M.

J. A. Bolger, I. C. M. Littler, and B. J. Eggleton, "Optimisation of superimposed chirped fibre Bragg gratings for the generation of ultra-high speed optical pulse bursts," Opt. Commun. 271, 524-531 (2007).
[CrossRef]

Magné, J.

Okamoto, K.

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

Poole, S.

Richardson, D. J.

B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Rochette, M.

Roelens, M. A. F

B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Roelens, M. A. F.

Sakamoto, T.

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

Seo, D. S.

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett 30, 1557-1559 (2005).
[CrossRef] [PubMed]

Slavik, R.

Slavík, R.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, and S. LaRochelle, "Generation of a 100-GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Sugaya, Y

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

Sugita, A.

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

Takeda, S.

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

Thomsen, B. C.

B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Watanabe, S.

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

Watts, R. T.

B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Weiner, A. M.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping for optical arbitrary pulse-train generation," J. Opt. Soc. Am. B 24, 2124-2128 (2007).
[CrossRef]

G.-H. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper," J. Lightwave Technol. 23, 3916-3923 (2005).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett 30, 1557-1559 (2005).
[CrossRef] [PubMed]

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, and S. LaRochelle, "Generation of a 100-GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 413-415 (2003).
[CrossRef]

D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002).
[CrossRef]

B. C. Thomsen, M. A. F Roelens, R. T. Watts, and D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y Sugaya, and S. Watanabe, "All-Optical Wavelength Conversion of 500-fs Pulse Trains by Using a Nonlinear-Optical Loop Mirror Composed of a Highly Nonlinear DSF," IEEE Photon. Technol. Lett. 13, 502-504 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

J. A. Bolger, I. C. M. Littler, and B. J. Eggleton, "Optimisation of superimposed chirped fibre Bragg gratings for the generation of ultra-high speed optical pulse bursts," Opt. Commun. 271, 524-531 (2007).
[CrossRef]

Opt. Lett

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett 30, 1557-1559 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of Fourier-domain pulse shaping.

Fig. 2.
Fig. 2.

Concept diagram showing the operation of the WSS. Light is sent from a fiber to a diffraction grating. The diffraction grating angularly disperses the light, so that each wavelength is sent to a different portion of the LCOS along the wavelength axis. Vertically, the light diverges so that the signal overlaps a large number of pixels (typically about 400). By sloping the phase front along the vertical axis, the signal is deflected to a desired output port, after the optical path is retraced upon reflection from the LCOS. Not shown in this simple figure is the imaging system, which is configured into a 4f (unitary magnification) optical system, and which also features a polarization diversity scheme which is used to eliminate polarization dependent effects.

Fig. 3.
Fig. 3.

Schematic overview of how different parts of the LCOS can act on different parts of the spectrum. The blue part is programmed to reshape a short input pulse into a pulse burst with three pulses, and send this specific wavelength range to ‘Output 2’ whereas the red part is programmed to reshape a short input pulse into a burst of 2 pulses that are being sent to ‘Output 1’.

Fig. 4.
Fig. 4.

Experimental layout. MLRL: mode-locked ring laser; HNLF: highly nonlinear fiber; WSS: wavelength selective switch; OSA: optical spectrum analyzer. The polarization is optimized before the LiNbO3 Mach Zehnder Modulator for characterization.

Fig. 5.
Fig. 5.

Top: Output spectrum of the of the 2 ps mode-locked ring laser pulses. Bottom: Continuum of 2 ps, 40 GHz pulses, generated by propagating the high power ring laser pulses through 1 km of HNLF.

Fig. 6.
Fig. 6.

Spectral intensity response measured on ports 6 and 7 of the WSS, respectively the profiles of a 2-pulse burst at 1541 nm and a 4-pulse burst at 1562 nm.

Fig. 7.
Fig. 7.

Measured temporal intensity (blue solid line) and chirp profiles (green dashed lines) of various pulse bursts around a carrier wavelength of 1562 nm, sent to port 7 (top three) of the WSS and around 1541 nm sent to port 6 (lower three).

Metrics