Abstract

The additive RF phase noise of a microwave photonics link is measured using, as the optical source, a semiconductor laser operating in the class-A regime. The relative intensity noise of this laser being below the shot noise relative level, the phase noise floor of the link is shown to be shot noise limited, −152 dBc/Hz in our experimental conditions. As a result, the phase noise floor evolves as the inverse of the detected photocurrent, pushing the limits of performance to the availability of high power photo-detectors. Below 6 kHz from the carrier frequency at 3GHz, some noise, in excess with respect to the shot noise limit, is observed but remains lower than −110 dBc/Hz at 100 Hz offset frequency. This residual noise originates mainly from environmental noise and can be reduced by isolating the laser from acoustic/electromagnetic perturbations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Blanc, S. Formont, D. Dolfi, S. Tonda-Goldstein, N. Vodjdani, G. Auvray, S. Blanc, C. Fourdin, Y. Canal, and J. Chazelas, "Photonics for RF signal processing in radar systems," in 2004 International Topical Meeting on Microwave Photonics (IEEE/LEOS, Piscataway, NJ, 2004), 305-308 (2004).
  2. C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
    [CrossRef]
  3. S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
    [CrossRef]
  4. A. J. Seeds and K. J. Williams, "Microwave photonics," J. of Lightwave Technol. 24, 4628-4641 (2006).
    [CrossRef]
  5. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Bésisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
    [CrossRef]
  6. A. S. Daryoush, "Phase coherency of generated millimeter wave signals using fiber optic distribution of a reference," in 1996 International Topical Meeting on Microwave Photonics (IEEE/LEOS, Kyoto Japan, 1996), Technical Digest WE4-3, 225-228 (1996).
  7. M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
    [CrossRef]
  8. P. J. Matthews, P. D. Biernacki, and R. D. Esman, "RF Phase-noise performance of a two-channel optical downconverting link for microwave phase detection," IEEE Photon. Technol. Lett. 10, 594-596 (1998).
    [CrossRef]
  9. G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, "Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser," Opt. Lett. 31, 62-64 (2006).
    [CrossRef] [PubMed]
  10. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, "Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications," Opt. Lett. 32, 650-652 (2007).
    [CrossRef] [PubMed]
  11. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, "Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers," J. Lightwave Technol. 26, 952-961 (2008).
    [CrossRef]
  12. M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
    [CrossRef]
  13. http://www.innolight.de/.

2008 (1)

2007 (2)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, "Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications," Opt. Lett. 32, 650-652 (2007).
[CrossRef] [PubMed]

2006 (5)

G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, "Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser," Opt. Lett. 31, 62-64 (2006).
[CrossRef] [PubMed]

C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
[CrossRef]

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, "Microwave photonics," J. of Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Bésisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006).
[CrossRef]

1999 (1)

M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
[CrossRef]

1998 (1)

P. J. Matthews, P. D. Biernacki, and R. D. Esman, "RF Phase-noise performance of a two-channel optical downconverting link for microwave phase detection," IEEE Photon. Technol. Lett. 10, 594-596 (1998).
[CrossRef]

Ackerman, E. I.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
[CrossRef]

Alouini, M.

Baili, G.

Bésisle, C.

Betts, G. E.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
[CrossRef]

Bibey, M.

M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
[CrossRef]

Biernacki, P. D.

P. J. Matthews, P. D. Biernacki, and R. D. Esman, "RF Phase-noise performance of a two-channel optical downconverting link for microwave phase detection," IEEE Photon. Technol. Lett. 10, 594-596 (1998).
[CrossRef]

Blanc, S.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
[CrossRef]

Bretenaker, F.

Cox, C. H.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
[CrossRef]

Debrogies, F.

M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
[CrossRef]

Dion, J.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

Dolfi, D.

Domenech, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

Esman, R. D.

P. J. Matthews, P. D. Biernacki, and R. D. Esman, "RF Phase-noise performance of a two-channel optical downconverting link for microwave phase detection," IEEE Photon. Technol. Lett. 10, 594-596 (1998).
[CrossRef]

Garenaux, K.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
[CrossRef]

Garnache, A.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, "Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications," Opt. Lett. 32, 650-652 (2007).
[CrossRef] [PubMed]

Jacquemet, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

Kashyap, R.

Krakowski, M.

M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
[CrossRef]

Lucas-Leclin, G.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

Matthews, P. J.

P. J. Matthews, P. D. Biernacki, and R. D. Esman, "RF Phase-noise performance of a two-channel optical downconverting link for microwave phase detection," IEEE Photon. Technol. Lett. 10, 594-596 (1998).
[CrossRef]

Merlet, T.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
[CrossRef]

Mongardien, D.

M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
[CrossRef]

Moronvalle, C.

Morvan, L.

Paquet, S.

Prince, J. L.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
[CrossRef]

Qi, G.

Queguiner, M.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
[CrossRef]

Sagnes, I.

Seeds, A. J.

A. J. Seeds and K. J. Williams, "Microwave photonics," J. of Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

Seregelyi, J.

Strassner, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

Williams, K. J.

A. J. Seeds and K. J. Williams, "Microwave photonics," J. of Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

Wu, K.

Yao, J.

Zhang, X.

Appl. Phys. B (1)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, J. Dion, M. Strassner, I. Sagnes and A. Garnache, "Single-frequency cw certical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling," Appl. Phys. B 86, 503-510 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. J. Matthews, P. D. Biernacki, and R. D. Esman, "RF Phase-noise performance of a two-channel optical downconverting link for microwave phase detection," IEEE Photon. Technol. Lett. 10, 594-596 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech (1)

M. Bibey, F. Debrogies, M. Krakowski, and D. Mongardien, "Very low phase-noise optical links-experiments and theory," IEEE Trans. Microwave Theory Tech 47, 2257-2261 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

C. H. CoxIII, E. I. Ackerman, G. E. Betts, J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 54, 906-920 (2006).
[CrossRef]

IEEE. Trans. Microwave Theory Tech. (1)

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, "Optical Multibeamforming Network based on WDM and Dispersion Fiber in Receive Mode," IEEE. Trans. Microwave Theory Tech. 54, 402-411 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. of Lightwave Technol. (1)

A. J. Seeds and K. J. Williams, "Microwave photonics," J. of Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

Opt. Lett. (2)

Other (3)

S. Blanc, S. Formont, D. Dolfi, S. Tonda-Goldstein, N. Vodjdani, G. Auvray, S. Blanc, C. Fourdin, Y. Canal, and J. Chazelas, "Photonics for RF signal processing in radar systems," in 2004 International Topical Meeting on Microwave Photonics (IEEE/LEOS, Piscataway, NJ, 2004), 305-308 (2004).

A. S. Daryoush, "Phase coherency of generated millimeter wave signals using fiber optic distribution of a reference," in 1996 International Topical Meeting on Microwave Photonics (IEEE/LEOS, Kyoto Japan, 1996), Technical Digest WE4-3, 225-228 (1996).

http://www.innolight.de/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The experimental set-up used to assess the impact of the laser on the RF phase noise of a microwave photonics link. (1) Reference arm including coarse (Δτ) and fine (φ) time delay adjustment and a RF attenuator (Att.). (2) Arm containing the optical link under test followed by a low noise RF amplifier (G) and a RF attenuator (Att.) The optical link is composed of the low noise class-A laser, a Mach-Zehnder modulator (MZM), an optical fiber and a high frequency low noise photodiode (D).

Fig. 2.
Fig. 2.

Additive phase noise spectra. (a) Plot 1 : optical modulation index and detected photocurrent are respectively 26% and 1.2 mA. Plot 2 : optical modulation index and detected photocurrent are respectively 59% and 1.59 mA. Plot 3 : Measured noise floor when the optical link is replaced by an RF cable. (b) The Product m 2 Lfloor (m : optical modulation index, Lfloor : additive phase noise floor) evolves as the inverse of the detected photocurrent (Iph ), proving that the phase noise is actually shot noise limited.

Fig. 3.
Fig. 3.

Additive phase noise spectra. Plot 1 : same as plot 2 of Fig.2, The optical modulation index and the detected photocurrent are respectively 59% and 1.59 mA. Plot 2 : the laser is covered with basic acoustic/electromagnetic insulation panels. The optical modulation index and the detected photocurrent are respectively 30% and 1.8 mA. Plot 3 : Measured noise floor when the optical link is replaced by an RF cable.

Fig. 4.
Fig. 4.

Comparison between additive phase noise spectra when the semiconductor class-A laser (plot 1) and the solid-state Mephisto laser (plot 2) are implemented in the microwave photonics link. The optical modulation index and the detected photocurrent are respectively 30% and 1.8 mA for the class-A laser, and respectively 53% and 1.73 mA for the solid-state Mephisto laser. Plot 3 is the measurement noise floor. The dashed line displays the shot noise level.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P floor ( f c ) = 1 2 R ( k B T R + 2 e I ph + RIN ( f c ) I ph 2 )
P floor ( f c ) = e I ph R
L floor ( f c ) = 2 e m 2 I ph

Metrics