Abstract

We propose an optical manipulation system by using a liquid crystal (LC) device with unique functions such as an anamorphic lens property, variable-focusing and deflection properties. The positions and rotation of optical trapped microscopic slender particles suspended in water can be controlled. The trapped particles can be aligned along the major axis of the elliptically shaped laser beam spot and the position of the particle can be controlled three-dimensionally.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams", Nature 330, 769 (1987).
    [CrossRef] [PubMed]
  2. W. H. Wirght, G. Jsonek and M. W. Berns: "Parametric study of the forces on microspheres held by optical tweezers", Appl. Opt. 33, 735 (1994).
  3. D.G. Grier, "A Revolution in Optical Manipulation", Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  4. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
    [CrossRef]
  5. D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
    [CrossRef]
  6. S. Sato, "Liquid-crystal lens-cells with variable focal length" Jpn. J. Appl. Phys,  18, 1679 (1979).
    [CrossRef]
  7. M. Ye, and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, L571 (2002).
    [CrossRef]
  8. T. Nose, and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425 (1989).
    [CrossRef]
  9. Z. He, T. Nose, and S. Sato, "Polarization properties of an amplitude nematic liquid crystal grating", Opt. Eng. 37, 2885 (1998).
    [CrossRef]
  10. M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties", Jpn. J. Appl. Phys. 44, 6098 (2005).
    [CrossRef]

2005 (1)

M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties", Jpn. J. Appl. Phys. 44, 6098 (2005).
[CrossRef]

2004 (1)

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

2003 (2)

D.G. Grier, "A Revolution in Optical Manipulation", Nature 424, 810 (2003).
[CrossRef] [PubMed]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

2002 (1)

M. Ye, and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, L571 (2002).
[CrossRef]

1998 (1)

Z. He, T. Nose, and S. Sato, "Polarization properties of an amplitude nematic liquid crystal grating", Opt. Eng. 37, 2885 (1998).
[CrossRef]

1994 (1)

1989 (1)

T. Nose, and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425 (1989).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams", Nature 330, 769 (1987).
[CrossRef] [PubMed]

1979 (1)

S. Sato, "Liquid-crystal lens-cells with variable focal length" Jpn. J. Appl. Phys,  18, 1679 (1979).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams", Nature 330, 769 (1987).
[CrossRef] [PubMed]

Berns, M. W.

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Cabrini, S.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Cojoc, D.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Di fabrizio, E.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams", Nature 330, 769 (1987).
[CrossRef] [PubMed]

Emiliani, V.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Ferrari, E.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Grier, D.G.

D.G. Grier, "A Revolution in Optical Manipulation", Nature 424, 810 (2003).
[CrossRef] [PubMed]

He, Z.

Z. He, T. Nose, and S. Sato, "Polarization properties of an amplitude nematic liquid crystal grating", Opt. Eng. 37, 2885 (1998).
[CrossRef]

Jsonek, G.

Kawamura, M.

M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties", Jpn. J. Appl. Phys. 44, 6098 (2005).
[CrossRef]

Leach, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Malureanu, R.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Nose, T.

Z. He, T. Nose, and S. Sato, "Polarization properties of an amplitude nematic liquid crystal grating", Opt. Eng. 37, 2885 (1998).
[CrossRef]

T. Nose, and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Padgetta, M. J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Proietti, R. Z.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

Sato, S.

M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties", Jpn. J. Appl. Phys. 44, 6098 (2005).
[CrossRef]

M. Ye, and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, L571 (2002).
[CrossRef]

Z. He, T. Nose, and S. Sato, "Polarization properties of an amplitude nematic liquid crystal grating", Opt. Eng. 37, 2885 (1998).
[CrossRef]

T. Nose, and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425 (1989).
[CrossRef]

S. Sato, "Liquid-crystal lens-cells with variable focal length" Jpn. J. Appl. Phys,  18, 1679 (1979).
[CrossRef]

Wirght, W. H.

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams", Nature 330, 769 (1987).
[CrossRef] [PubMed]

Ye, M.

M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties", Jpn. J. Appl. Phys. 44, 6098 (2005).
[CrossRef]

M. Ye, and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, L571 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgetta, "Optically controlled three-dimensional rotation of microscopic objects", Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Jpn. J. Appl. Phys (1)

S. Sato, "Liquid-crystal lens-cells with variable focal length" Jpn. J. Appl. Phys,  18, 1679 (1979).
[CrossRef]

Jpn. J. Appl. Phys. (3)

M. Ye, and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, L571 (2002).
[CrossRef]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti and E. Di fabrizio, "Multiple Optical trapping by means of diffractive optical elements", Jpn. J. Appl. Phys. 43, 3910 (2004).
[CrossRef]

M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties", Jpn. J. Appl. Phys. 44, 6098 (2005).
[CrossRef]

Liq. Cryst. (1)

T. Nose, and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams", Nature 330, 769 (1987).
[CrossRef] [PubMed]

D.G. Grier, "A Revolution in Optical Manipulation", Nature 424, 810 (2003).
[CrossRef] [PubMed]

Opt. Eng. (1)

Z. He, T. Nose, and S. Sato, "Polarization properties of an amplitude nematic liquid crystal grating", Opt. Eng. 37, 2885 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.1.
Fig.1.

Schematic diagram of an optical manipulation system.

Fig. 2.
Fig. 2.

Structure of an LC device

Fig. 3.
Fig. 3.

Circular interference fringe pattern images in the hole-pattern region. (V 1~V 8=55 V)

Fig. 4.
Fig. 4.

Shift of the interference fringe pattern images in the hole-pattern region.

Fig. 5.
Fig. 5.

Elliptical interference fringe pattern images in the hole-pattern region.

Fig. 6.
Fig. 6.

Shift properties of the trapped slender particle.

Fig. 7.
Fig. 7.

Rotation control of the trapped particle.

Fig. 8.
Fig. 8.

Relationship between the rotation angle of the trapped particle and operating time.

Metrics