Abstract

Detail of control technique of bit-wise phase correlation in 160 (4×40) Gbit/s optical time division multiplexing (OTDM) signal using a phase-correlation monitor based on 1-bit delay asymmetric interferometers (AIFs) is described. The 1-bit delay AIF transforms a bit-by-bit optical phase discontinuity to an optical power variation, so that it enables to quantify the phase-jump between adjacent bits. By use of this unique technique, we experimentally demonstrated stable generation of bitwisely phase-controlled 160 Gbit/s periodical alternate-phase return-to-Zero (APRZ) signal in addition to other different modulation formats such as conventional RZ, carrier suppressed RZ (CS-RZ), pair-wise alternate-phase CSRZ (PAP-CSRZ) and π/2-APRZ. And long term stability was observed with CS-RZ signal. Also, we show some experimental results of 120 km unrepeatered transmission using standard single mode fiber (SSMF) and then discuss the impact of bit-wise phase change on 160 Gbit/s OTDM transmission performance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron.Lett. 36, 2027–2029 (2000).
    [Crossref]
  2. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
    [Crossref]
  3. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).
  4. A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003
  5. E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003
  6. T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, “Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression,” Opt. Lett. 30, 364–366 (2005).
    [Crossref] [PubMed]
  7. L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003
  8. H. Murai, M. Kagawa, H. Tsuji, and K Fujii, “Single channel 160 Gbit/s carrier-suppressed RZ transmission over 640 km with EA modulator based OTDM module,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.4, 2003
  9. S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003
  10. M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
    [Crossref]
  11. Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.
  12. S. Randel, B. Konrad, A. Hodžić, and K. Petermann, “Influence of bitwise phase changes on the performance of 160 Gbit/s transmission systems,” in Proc. 28th European Conf. on Opt. Commun. (ECOC 2002), P3.31, 2002.
  13. L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004
  14. J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003
  15. M. Kagawa, H. Murai, H. Tsuji, and K. Fujii, “Performance comparison of bitwise phase-controlled 160 Gbit/s signal transmission using an OTDM multiplexer with phase-correlation monitor,” in Proc. 30th European Conf. on Opt. Commun. (ECOC 2004), We4.P.109, 2004
  16. H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
    [Crossref]
  17. T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
    [Crossref]
  18. H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005
  19. M. Kagawa, H. Murai, H. Tsuji. S. Takasaki, and K. Fujii, “Single Channel 40 Gbit/s-based 160 Gbit/s OTDM transmission over 180 km of SMF,” in Tec. Dig. 7th Optoelectronics and Communications Conf. (OECC 2002), 9B1-2, 2002
  20. A. R. Pratt, H. Murai, H. T. Yamada, and Y. Ozeki, “40 Gbit/s signal channel transmission over 3120 km of dispersion managed standard fiber,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 10.1.6, 2000
  21. K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005
  22. M. Hanawa “A simple fourier analysis on multi path interference in cascaede FBGs,” in Proc. 2006 IEICE Society Conf. (domesitic), C-3-3, 2006
  23. D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1867 (2004).
    [Crossref]
  24. T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical delay interforometer based on phase shifted fiber Bragg grating with optically controlleable phase shifter,” Opt. Express,  14, 4250–4255 (2006).
    [Crossref] [PubMed]
  25. H. T. Yamada, H. Murai, A. R. Pratt, and Y. Ozeki, “Schalable 80 Gbit/s OTDM using a modulator architecture based on EA modulators,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 1.3.5, 2000
  26. N. S. Bergano, F. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” Photon. Techenol. Lett. 5, 304 (1993).
    [Crossref]
  27. T. Inoue and A, Maruta, “Pre-spread RZ pulse transmission for reducing intra-channel nonlinear interactions,” in Proc. Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000 13th Annual Meeting),  1, 13–16 (2000).
  28. A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.
  29. I. Morita and N. Edagawa “Study on optimum OTDM signals for long-distance 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2002 (OFC’02), TuA4, 2002.

2007 (2)

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
[Crossref]

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

2006 (3)

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical delay interforometer based on phase shifted fiber Bragg grating with optically controlleable phase shifter,” Opt. Express,  14, 4250–4255 (2006).
[Crossref] [PubMed]

2005 (2)

T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, “Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression,” Opt. Lett. 30, 364–366 (2005).
[Crossref] [PubMed]

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005

2004 (1)

D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1867 (2004).
[Crossref]

2002 (1)

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

2000 (2)

T. Inoue and A, Maruta, “Pre-spread RZ pulse transmission for reducing intra-channel nonlinear interactions,” in Proc. Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000 13th Annual Meeting),  1, 13–16 (2000).

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron.Lett. 36, 2027–2029 (2000).
[Crossref]

1993 (1)

N. S. Bergano, F. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” Photon. Techenol. Lett. 5, 304 (1993).
[Crossref]

Abe, M.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Arahira, S

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Asobe, M.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Bergano, N. S.

N. S. Bergano, F. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” Photon. Techenol. Lett. 5, 304 (1993).
[Crossref]

Berger, J.

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Berntson, A.

J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003

Boerner, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Cabot, S.

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

Charlet, G.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Daikoku, M.

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

Davidson, C. R.

N. S. Bergano, F. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” Photon. Techenol. Lett. 5, 304 (1993).
[Crossref]

Djupsjöbacka, A.

J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003

Edagawa, N.

I. Morita and N. Edagawa “Study on optimum OTDM signals for long-distance 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2002 (OFC’02), TuA4, 2002.

Feber, S.

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Ferber, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Forzati, M.

J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003

Fujii, K

H. Murai, M. Kagawa, H. Tsuji, and K Fujii, “Single channel 160 Gbit/s carrier-suppressed RZ transmission over 640 km with EA modulator based OTDM module,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.4, 2003

Fujii, K.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
[Crossref]

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005

M. Kagawa, H. Murai, H. Tsuji, and K. Fujii, “Performance comparison of bitwise phase-controlled 160 Gbit/s signal transmission using an OTDM multiplexer with phase-correlation monitor,” in Proc. 30th European Conf. on Opt. Commun. (ECOC 2004), We4.P.109, 2004

M. Kagawa, H. Murai, H. Tsuji. S. Takasaki, and K. Fujii, “Single Channel 40 Gbit/s-based 160 Gbit/s OTDM transmission over 180 km of SMF,” in Tec. Dig. 7th Optoelectronics and Communications Conf. (OECC 2002), 9B1-2, 2002

Futami, F.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Grobnic, D.

D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1867 (2004).
[Crossref]

Hagiuda, K.

Han, W. T.

Hanawa, M.

Hann, S.

Hasegawa, T.

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Hirano, A.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Hirooka, T.

Hodžic, A.

S. Randel, B. Konrad, A. Hodžić, and K. Petermann, “Influence of bitwise phase changes on the performance of 160 Gbit/s transmission systems,” in Proc. 28th European Conf. on Opt. Commun. (ECOC 2002), P3.31, 2002.

Inoue, T.

T. Inoue and A, Maruta, “Pre-spread RZ pulse transmission for reducing intra-channel nonlinear interactions,” in Proc. Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000 13th Annual Meeting),  1, 13–16 (2000).

Ishii, M.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

Junginger, B.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Kagawa, M.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
[Crossref]

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005

M. Kagawa, H. Murai, H. Tsuji. S. Takasaki, and K. Fujii, “Single Channel 40 Gbit/s-based 160 Gbit/s OTDM transmission over 180 km of SMF,” in Tec. Dig. 7th Optoelectronics and Communications Conf. (OECC 2002), 9B1-2, 2002

M. Kagawa, H. Murai, H. Tsuji, and K. Fujii, “Performance comparison of bitwise phase-controlled 160 Gbit/s signal transmission using an OTDM multiplexer with phase-correlation monitor,” in Proc. 30th European Conf. on Opt. Commun. (ECOC 2004), We4.P.109, 2004

H. Murai, M. Kagawa, H. Tsuji, and K Fujii, “Single channel 160 Gbit/s carrier-suppressed RZ transmission over 640 km with EA modulator based OTDM module,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.4, 2003

Kawanishi, S.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).

Kerfoot, F.

N. S. Bergano, F. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” Photon. Techenol. Lett. 5, 304 (1993).
[Crossref]

Kim, S. J.

Kim, T. Y.

Kim, Y. H.

Kobayashi, S.

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

Konrad, B.

S. Randel, B. Konrad, A. Hodžić, and K. Petermann, “Influence of bitwise phase changes on the performance of 160 Gbit/s transmission systems,” in Proc. 28th European Conf. on Opt. Commun. (ECOC 2002), P3.31, 2002.

Kroh, M.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Kubota, F.

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

Lach, E.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Leuthold, J.

L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003

Li, J.

J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003

Liu, X.

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003

Ludwig, R.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Marembert, V.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Maruta, A,

T. Inoue and A, Maruta, “Pre-spread RZ pulse transmission for reducing intra-channel nonlinear interactions,” in Proc. Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000 13th Annual Meeting),  1, 13–16 (2000).

Matensson, J.

J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003

Mihailov, S. J.

D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1867 (2004).
[Crossref]

Mitomi, O.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Miyamoto, Y.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Miyazaki, T.

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

Miyazawa, H.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Möller, L.

L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

Mori, K.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).

Morita, I.

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

I. Morita and N. Edagawa “Study on optimum OTDM signals for long-distance 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2002 (OFC’02), TuA4, 2002.

Murai, H.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
[Crossref]

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005

M. Kagawa, H. Murai, H. Tsuji. S. Takasaki, and K. Fujii, “Single Channel 40 Gbit/s-based 160 Gbit/s OTDM transmission over 180 km of SMF,” in Tec. Dig. 7th Optoelectronics and Communications Conf. (OECC 2002), 9B1-2, 2002

M. Kagawa, H. Murai, H. Tsuji, and K. Fujii, “Performance comparison of bitwise phase-controlled 160 Gbit/s signal transmission using an OTDM multiplexer with phase-correlation monitor,” in Proc. 30th European Conf. on Opt. Commun. (ECOC 2004), We4.P.109, 2004

A. R. Pratt, H. Murai, H. T. Yamada, and Y. Ozeki, “40 Gbit/s signal channel transmission over 3120 km of dispersion managed standard fiber,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 10.1.6, 2000

H. T. Yamada, H. Murai, A. R. Pratt, and Y. Ozeki, “Schalable 80 Gbit/s OTDM using a modulator architecture based on EA modulators,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 1.3.5, 2000

H. Murai, M. Kagawa, H. Tsuji, and K Fujii, “Single channel 160 Gbit/s carrier-suppressed RZ transmission over 640 km with EA modulator based OTDM module,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.4, 2003

Murata, K.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Nakamura, S.

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Nakazawa, M.

T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, “Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression,” Opt. Lett. 30, 364–366 (2005).
[Crossref] [PubMed]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron.Lett. 36, 2027–2029 (2000).
[Crossref]

Nishiki, A.

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

Ogawa, I.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

Ogawa, Y.

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Ohara, T.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

Okamoto, M.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

Ono, S.

Ozeki, Y.

A. R. Pratt, H. Murai, H. T. Yamada, and Y. Ozeki, “40 Gbit/s signal channel transmission over 3120 km of dispersion managed standard fiber,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 10.1.6, 2000

H. T. Yamada, H. Murai, A. R. Pratt, and Y. Ozeki, “Schalable 80 Gbit/s OTDM using a modulator architecture based on EA modulators,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 1.3.5, 2000

Park, C. S.

Pecci, P.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Petermann, K.

S. Randel, B. Konrad, A. Hodžić, and K. Petermann, “Influence of bitwise phase changes on the performance of 160 Gbit/s transmission systems,” in Proc. 28th European Conf. on Opt. Commun. (ECOC 2002), P3.31, 2002.

Pratt, A. R.

H. T. Yamada, H. Murai, A. R. Pratt, and Y. Ozeki, “Schalable 80 Gbit/s OTDM using a modulator architecture based on EA modulators,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 1.3.5, 2000

A. R. Pratt, H. Murai, H. T. Yamada, and Y. Ozeki, “40 Gbit/s signal channel transmission over 3120 km of dispersion managed standard fiber,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 10.1.6, 2000

Randel, S.

S. Randel, B. Konrad, A. Hodžić, and K. Petermann, “Influence of bitwise phase changes on the performance of 160 Gbit/s transmission systems,” in Proc. 28th European Conf. on Opt. Commun. (ECOC 2002), P3.31, 2002.

Ryf, R.

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

Sano, A.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Sarashina, M.

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

Sasaki, K.

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

Sato, K.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Schmauss, B.

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Schmidt, M.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Schmidt-Langhorst, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Schubert, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Schuh, K.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Shake, I.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).

Smelser, C. W.

D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1867 (2004).
[Crossref]

Su, Y.

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003

Suzuki, A.

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Suzuki, M.

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

Tajima, K.

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Takara, H.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).

Takasaki, H. Tsuji. S.

M. Kagawa, H. Murai, H. Tsuji. S. Takasaki, and K. Fujii, “Single Channel 40 Gbit/s-based 160 Gbit/s OTDM transmission over 180 km of SMF,” in Tec. Dig. 7th Optoelectronics and Communications Conf. (OECC 2002), 9B1-2, 2002

Tamai, H.

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron.Lett. 36, 2027–2029 (2000).
[Crossref]

Tanaka, H.

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

Toba, H.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Tsuji, H.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
[Crossref]

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005

M. Kagawa, H. Murai, H. Tsuji, and K. Fujii, “Performance comparison of bitwise phase-controlled 160 Gbit/s signal transmission using an OTDM multiplexer with phase-correlation monitor,” in Proc. 30th European Conf. on Opt. Commun. (ECOC 2004), We4.P.109, 2004

H. Murai, M. Kagawa, H. Tsuji, and K Fujii, “Single channel 160 Gbit/s carrier-suppressed RZ transmission over 640 km with EA modulator based OTDM module,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.4, 2003

Uchiyama, K.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).

Unterboersch, G.

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Ushikubo, T.

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

Veith, G.

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

Wang, X.

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

Watanabe, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Weber, H. G.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Wei, X.

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

Wietfeld, A.

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

Xie, C.

L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

Yamada, H. T.

A. R. Pratt, H. Murai, H. T. Yamada, and Y. Ozeki, “40 Gbit/s signal channel transmission over 3120 km of dispersion managed standard fiber,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 10.1.6, 2000

H. T. Yamada, H. Murai, A. R. Pratt, and Y. Ozeki, “Schalable 80 Gbit/s OTDM using a modulator architecture based on EA modulators,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 1.3.5, 2000

Yamada, T.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron.Lett. 36, 2027–2029 (2000).
[Crossref]

Yonenaga, K.

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

Electron. Lett. (1)

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 43, 178–179 (2006).
[Crossref]

Electron.Lett. (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron.Lett. 36, 2027–2029 (2000).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, and M. Okamoto, “High stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery,” IEEE J. Sel. Topics Quantum Electron. 13, 40–47 (2007).
[Crossref]

IEEE J. Sel. Tops. Quantum Electron. (1)

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission,” IEEE J. Sel. Tops. Quantum Electron. 13, 70–78 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1867 (2004).
[Crossref]

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, “8×160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PDM compensator,” IEEE Photon. Technol. Lett. 18, 391–393 (2006).
[Crossref]

IEICE Trans. Commun. (2)

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA modulator-based optical multiplexing/demultiplexing techniques for 160 Gbit./s OTDM signal transmission,” IEICE Trans. Commun.,  E88-C, 2005

A. Hirano, M. Asobe, K. Sato, Y. Miyamoto, K. Yonenaga, H. Miyazawa, M. Abe, H. Takara, and I. Shake, “Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero (CS-RZ) format generated by using phaseand duty-controlled optical time division multiplexing (OTDM) technique,” IEICE Trans. Commun. E85-B, 2002.

in Proc. Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000 13th Annual Meeting) (1)

T. Inoue and A, Maruta, “Pre-spread RZ pulse transmission for reducing intra-channel nonlinear interactions,” in Proc. Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000 13th Annual Meeting),  1, 13–16 (2000).

Opt. Express (1)

Opt. Lett. (1)

Photon. Techenol. Lett. (1)

N. S. Bergano, F. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” Photon. Techenol. Lett. 5, 304 (1993).
[Crossref]

Other (17)

I. Morita and N. Edagawa “Study on optimum OTDM signals for long-distance 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2002 (OFC’02), TuA4, 2002.

H. T. Yamada, H. Murai, A. R. Pratt, and Y. Ozeki, “Schalable 80 Gbit/s OTDM using a modulator architecture based on EA modulators,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 1.3.5, 2000

L. Möller, Y. Su, X. Liu, J. Leuthold, and C. Xie, “Generation of 160 Gb/s carrier-suppressed return-to-zero signals,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.3, 2003

H. Murai, M. Kagawa, H. Tsuji, and K Fujii, “Single channel 160 Gbit/s carrier-suppressed RZ transmission over 640 km with EA modulator based OTDM module,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Mo3.6.4, 2003

S. Feber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch, and H. G. Weber, “Comparison of DPSK and OOK modulation format in a 160 Gb/s transmission system,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th2.6.2, 2003

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s×19ch) OTDM-WDM transmission experiment,” in Tech. Dig. Optical Fiber Communications Conf. 1999 (OFC’99), PD1, (1999).

A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S Arahira, K. Tajima, and S. Nakamura, “8×160 Gb/s (1.28 Tb/s) DWDM/OTDM unrepeatered transmission over 140 km standard fiber y semiconductor-based devices,” in Proc. 29th European Conf. on Opt. Commun. (ECOC2003), Mo3.6.1, 2003

E. Lach, K. Schuh, M. Schmidt, B. Junginger, G. Charlet, P. Pecci, and G. Veith, “7×170 Gbit/s (160 Gbit/s+FEC overhead) DWDM transmission with 0.53 bit/s/Hz spectral efficiency over long haul distance of standard SMF,” in Proc. 29th European Conf. on Opt. Commun. (ECOC 2003), Th4.3.5, 2003

M. Kagawa, H. Murai, H. Tsuji. S. Takasaki, and K. Fujii, “Single Channel 40 Gbit/s-based 160 Gbit/s OTDM transmission over 180 km of SMF,” in Tec. Dig. 7th Optoelectronics and Communications Conf. (OECC 2002), 9B1-2, 2002

A. R. Pratt, H. Murai, H. T. Yamada, and Y. Ozeki, “40 Gbit/s signal channel transmission over 3120 km of dispersion managed standard fiber,” in Proc. 26th European Conf. on Opt. Commun. (ECOC 2000), paper 10.1.6, 2000

K. Sasaki, M. Sarashina, S. Kobayashi, H. Tamai, A. Nishiki, and T. Ushikubo “A new π/2-shift BPSK signal by superstructure fiber Bragg grating,” in Proc. 31st European Conf. on Opt. Commun. (ECOC 2005), We4.P.047, 2005

M. Hanawa “A simple fourier analysis on multi path interference in cascaede FBGs,” in Proc. 2006 IEICE Society Conf. (domesitic), C-3-3, 2006

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” Optical Amplifiers and their Applications 1999, PDP4, 1999.

S. Randel, B. Konrad, A. Hodžić, and K. Petermann, “Influence of bitwise phase changes on the performance of 160 Gbit/s transmission systems,” in Proc. 28th European Conf. on Opt. Commun. (ECOC 2002), P3.31, 2002.

L. Möller, Y. Su, C. Xie, R. Ryf, X. Liu, X. Wei, and S. Cabot, “All-optical phase construction of ps-pulses from fiber lasers for coherent signaling at ultla-high data rates (≥160 Gb/s),” in Tech. Dig. Optical Fiber Communications Conf. 2004 (OFC’04), PDP20, 2004

J. Matensson, A. Berntson, A. Djupsjöbacka, M. Forzati, and J. Li, “Phase modulation schemes for improbing intra-channel nonlinear tolerance in 40 Gbit/s transmission,” in Tech. Dig. Optical Fiber Communications Conf. 2003 (OFC’03), FE5, 2003

M. Kagawa, H. Murai, H. Tsuji, and K. Fujii, “Performance comparison of bitwise phase-controlled 160 Gbit/s signal transmission using an OTDM multiplexer with phase-correlation monitor,” in Proc. 30th European Conf. on Opt. Commun. (ECOC 2004), We4.P.109, 2004

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

The bit-wise phase difference of two-channel OTDM signal and phase difference of interfered signal by a 1-bit delay AIF.

Fig. 2.
Fig. 2.

Intensity variation as a function of the carrier phase difference between neighboring bits.

Fig. 3.
Fig. 3.

The bit-wise phase correlation of four channel OTDM signal and phase difference of interfered signal by a 1-bit delay AIF. l, where Δϕijij.

Fig. 4.
Fig. 4.

Intensity variation of interfered signal changing ϕ from 0 to π, (a) in case of I: (0, ϕ, 0, ϕ), (b) in case of II: (0, ϕ, θ, θ+ϕ), (c) in case of III: (0, ϕ, 0, θ+ϕ) and the definition of intensity variation (d).

Fig. 5.
Fig. 5.

40 GHz intensity of the interfered signal in the case of OTDM phase correlation (0, 0, 0, π) in case of ξ=0 (a), the intensity of 40 GHz component (b), and the monitoring setup of the 40 GHz component extraction (c).

Fig. 6.
Fig. 6.

Setup of 160 Gbit/s OTDM transmitter.

Fig. 7.
Fig. 7.

PS-FBG output intensity (a), and input reference 80 Gbit/s signals with phase difference θ of 0 (b), π/2 (c), and π (d), respectively.

Fig. 8.
Fig. 8.

Spectra and waveforms for (a) in-phase RZ signal, (b) π/2-APRZ signal, (c) CSP-RZ signal, (d) PAP-RZ signal and (e) periodical APRZ signal.

Fig. 9.
Fig. 9.

Stability of the technique. (a) spectral evolution for 12 consecutive hours and drifted spectrum after 12 hours without stabilizing (inset). (b), (c) eye-diagrams of controlled and initialized temperatures after 12 hours.

Fig. 10.
Fig. 10.

Schematic of experimental set-up

Fig. 11.
Fig. 11.

Influence on average Q factors of signals with the phase relation (0, π, 0, π) by phase error Δθ or Δϕ.

Fig. 12.
Fig. 12.

120 km transmission results, (a) Measured Q penalty for pulse width of 2.5 ps, Q penalty (b) for pulse width of 3 ps (c) and eye diagrams for pulse width of 3 ps, in case of (i) in-phase RZ signal, (ii) π/2-APRZ signal, (iii) CSP-RZ signal, (iv) PAP-RZ signal and (v) periodical APRZ signal.

Fig. 13.
Fig. 13.

Performance with different pulse width, simulated results at a launched power of +14 dBm.

Tables (1)

Tables Icon

Table 1. Specification of PS-FBG and FSI-AIF

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ave = 1 8 { 4 + cos ( θ + ξ ) + cos ( θ ξ ) } 1 T B T B 2 T B 2 E ( t ) 2 d t
I ave = 1 16 { 8 + cos ( Δ ϕ 12 ξ ) + cos ( Δ ϕ 23 ξ ) + cos ( Δ ϕ 34 ξ ) + cos ( Δ ϕ 41 ξ ) } 1 T B T B 2 T B 2 E ( t ) 2 d t .
Δ ϕ 12 = ϕ Δ ϕ 23 = ϕ θ Δ ϕ 34 = ϕ Δ ϕ 41 = θ + ϕ .
Δ ϕ 12 = ϕ Δ ϕ 23 = ϕ Δ ϕ 34 = ( θ + ϕ ) Δ ϕ 41 = θ + ϕ .

Metrics