Abstract

We report a self-starting prismless femtosecond Ti:sapphire ring laser whose repetition rate has been gradually increased from 1 to 2.12 GHz. A broadband spectrum extending from 650 to 1040 nm, in which 17% of the intracavity power is generated in a single-pass through the crystal, is preserved in spite of the reduction in peak power. An average power of 0.95 W was obtained for 7.5 W of pump power, with very stable operation verified over 22 hours. Pulses from this laser have been fully characterized in spectral phase, and then compressed to 5.9 femtoseconds using multiphoton intrapulse interference phase scan (MIIPS).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels and H. Kurz, "Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate," Opt. Lett. 27, 1839-1841 (2002).
    [CrossRef]
  2. A. Bartels, R. Gebs, M. S. Kirchnerm, and S. A. Diddams, "Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser," Opt. Lett. 32, 2553-2555 (2006).
    [CrossRef]
  3. S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003)
    [CrossRef]
  4. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuerm G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  5. T. M. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006)
    [CrossRef] [PubMed]
  6. G. T. Nogueira and F. C. Cruz, "Efficient 1 GHz Ti:sapphire laser with improved broadband continuum in the infrared," Opt. Lett. 31, 2069-2071 (2006).
    [CrossRef] [PubMed]
  7. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
    [CrossRef] [PubMed]
  8. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
    [CrossRef] [PubMed]
  9. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
    [CrossRef] [PubMed]
  10. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  11. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, "Coherent mode-selective Raman excitation towards standoff detection," Opt. Express 16, 5499-5504 (2008).
    [CrossRef] [PubMed]
  12. M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006).
    [CrossRef] [PubMed]
  13. Y. Coello, VadimV. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, "Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses," J. Opt. Soc. Am. B 25, 140-150 (2008).
    [CrossRef]
  14. T. M. Fortier, D. J. Jones, and S. T. Cundiff, "Phase stabilization of an octave-spanning Ti:sapphire laser," Opt. Lett. 28, 2198-2200 (2003).
    [CrossRef] [PubMed]
  15. T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
    [CrossRef]
  16. T. Brabec, Ch. Spielmann, and F. Krausz, "Limits of pulse shortening in solitary lasers," Opt. Lett. 17, 748 - 750 (1992).
    [CrossRef] [PubMed]
  17. A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  18. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," Opt. Express 14, 10939-10944 (2006).
    [CrossRef] [PubMed]
  19. B. Xu, Y. Coello, G.T. Nogueira, F. C. Cruz, and M. Dantus, paper in preparation.

2008 (2)

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

2006 (6)

2003 (3)

T. M. Fortier, D. J. Jones, and S. T. Cundiff, "Phase stabilization of an octave-spanning Ti:sapphire laser," Opt. Lett. 28, 2198-2200 (2003).
[CrossRef] [PubMed]

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003)
[CrossRef]

2002 (2)

A. Bartels and H. Kurz, "Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate," Opt. Lett. 27, 1839-1841 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

2001 (2)

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuerm G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
[CrossRef]

1999 (1)

1992 (1)

Agostini, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Augé, F.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Balcou, Ph.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Bartels, A.

Borukhovich, I.

Brabec, T.

Breger, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Coello, Y.

Cruz, F. C.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

G. T. Nogueira and F. C. Cruz, "Efficient 1 GHz Ti:sapphire laser with improved broadband continuum in the infrared," Opt. Lett. 31, 2069-2071 (2006).
[CrossRef] [PubMed]

Cundiff, S. T.

Dantus, M.

Dekorsy, T.

Diddams, S. A.

Drexler, W.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Ell, R.

Fortier, T. M.

Fuji, T.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Fujimoto, J. G.

Gebs, R.

Gunaratne, T. C.

Harris, D. A.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Ippen, E. P.

Jones, D. J.

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Kärtner, F. X.

Kirchnerm, M. S.

Krausz, F.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

T. Brabec, Ch. Spielmann, and F. Krausz, "Limits of pulse shortening in solitary lasers," Opt. Lett. 17, 748 - 750 (1992).
[CrossRef] [PubMed]

Kurz, H.

Li, H.

Lozovoy, V. V.

Marian, A.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Morgner, U.

Muller, H. G.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Mullot, G.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Nogueira, G. T.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Paul, P. M.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Spielmann, Ch.

Stingl, A.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Stowe, M. C.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

Tempea, G.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Toma, E. S.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Tseng, C.

Unterhuber, A.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Vadim, Y.

Weinacht, T.

Wrzesinski, P. J.

Xu, B.

Yakolev, V. S.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Ye, J.

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003)
[CrossRef]

Appl. Phys. B (1)

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (8)

T. M. Fortier, D. J. Jones, and S. T. Cundiff, "Phase stabilization of an octave-spanning Ti:sapphire laser," Opt. Lett. 28, 2198-2200 (2003).
[CrossRef] [PubMed]

T. Brabec, Ch. Spielmann, and F. Krausz, "Limits of pulse shortening in solitary lasers," Opt. Lett. 17, 748 - 750 (1992).
[CrossRef] [PubMed]

A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
[CrossRef]

A. Bartels and H. Kurz, "Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate," Opt. Lett. 27, 1839-1841 (2002).
[CrossRef]

A. Bartels, R. Gebs, M. S. Kirchnerm, and S. A. Diddams, "Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser," Opt. Lett. 32, 2553-2555 (2006).
[CrossRef]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuerm G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
[CrossRef]

T. M. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006)
[CrossRef] [PubMed]

G. T. Nogueira and F. C. Cruz, "Efficient 1 GHz Ti:sapphire laser with improved broadband continuum in the infrared," Opt. Lett. 31, 2069-2071 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, "Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003)
[CrossRef]

Science (2)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science 292, 1689 - 1692 (2001).
[CrossRef] [PubMed]

Other (1)

B. Xu, Y. Coello, G.T. Nogueira, F. C. Cruz, and M. Dantus, paper in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig 1.
Fig 1.

Left: Diagram of the prismless short ring laser cavity operating at 2.12 GHz. The two mirrors adjacent to the 3 mm-long crystal are curved (3 cm ROC) and the length between the other flat mirrors is 3 cm. Right: Laser output power as function of the pump power at 532 nm.

Fig. 2.
Fig. 2.

(a). Laser spectra (solid) and corresponding net GDD curves (dash) for the three mirror sets used in this work. Black: same set used in reference [6]; Red: the input coupler was replaced by another chirped mirror; Blue: the second curved mirror was replaced by another whose GDD oscillations compensate the ones from the IC. (b) Laser spectra of Fig. (a) in linear scale. Note that the peak at 680 nm is greatly suppressed (blue curve, 3rd set of mirrors).

Fig. 3.
Fig. 3.

MIIPS traces of the first (a) and last (b) iterations. Each vertical line of the MIIPS trace corresponds to a SHG spectrum generated at given value of δ (redder colors represent higher intensities). For transform-limited pulses (b), the features form parallel lines separated by π.

Fig. 4.
Fig. 4.

(a). Blue: Spectrum of the 2.12 GHz laser covering 328 nm (from 674 to 1002 nm, at 25% from the peak), obtained with third set of mirrors; red: spectral phase before correction; black: spectral phase after correction, and in expanded view on the inset. (b). SHG spectrum corresponding to the phase corrected pulses. Inset shows the calculated temporal profile after compression by MIIPS.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 3.53 D ( Φ E P ) + α Φ E P

Metrics