Abstract

We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62±0.24 dB, and polarization extinction ratio of 19±0.68 dB. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19±0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be -14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond pulse delivery.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006)
    [CrossRef]
  2. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
    [CrossRef] [PubMed]
  3. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2006)
    [CrossRef]
  4. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, "Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells," Opt. Express 14, 9576-9583 (2006)
    [CrossRef] [PubMed]
  5. C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
    [CrossRef]
  6. B. Ortac¸, M. Pl¨otner, T. Schreiber, J. Limpert, and A. T¨unnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007)
    [CrossRef]
  7. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. T¨unnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003)
    [CrossRef] [PubMed]
  8. A. Shirakawa, M. Tanisho, and K. Ueda, "Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber," Opt. Express 14, 12039-12048 (2006)
    [CrossRef] [PubMed]
  9. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, "Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect," J. Lightwave Technol. 25, 3563-3574 (2007)
    [CrossRef]
  10. F. Couny, F. Benabid, and P. S. Light, "Reduction of Fresnel back-reflections at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007)
    [CrossRef]
  11. X. Yu, X. Zheng, and H. Zhang, "PMD measurement of hollow-core photonic bandgap fiber by investigating power penalty of optically generated microwave signals," IEEE Photon. Technol. Lett. 19, 279-281 (2007) 12. http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf
    [CrossRef]
  12. http://www.crystal-fibre.com/datasheets/HC-1060-02.pdfQ1
  13. G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, F. Larr, B. J. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003)
  14. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005)
    [CrossRef] [PubMed]
  15. R. K. Olsson, T. V. Andersen, L. Leick, V. Levitan, P. Uhd Jepsen, and D. Turchinovich, "Femtosecond allpolarization- maintaining fiber laser operating at 1028 nm," Proc. SPIE 7022, 70221E-1-5 (2008)
    [CrossRef] [PubMed]
  16. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980)
  17. L. Xiao, W. Jin, and M. S. Demokan, "Fusion splicing small-core photonic crystal fibers and single mode fibers by repeated arc discharges," Opt. Lett. 32, 115-117 (2006)
    [CrossRef]
  18. K. Takada, K. Okamoto, Y. Sasaki, and J. Noda, "Ultimate limit of polarization cross talk in birefringent polarization-maintaining fibers," J. Opt. Soc. Am. A 3, 1594-1603 (1986)
    [CrossRef] [PubMed]

2007 (3)

2006 (5)

2005 (3)

F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005)
[CrossRef] [PubMed]

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
[CrossRef] [PubMed]

2003 (2)

1986 (1)

1980 (1)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980)

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, "Reduction of Fresnel back-reflections at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007)
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
[CrossRef] [PubMed]

Bouwmans, G.

Broderick, N. G. R.

Corwin, K. L.

Couny, F.

F. Couny, F. Benabid, and P. S. Light, "Reduction of Fresnel back-reflections at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007)
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
[CrossRef] [PubMed]

Demokan, M. S.

Hall, G. E.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980)

Hansen, T. P.

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2006)
[CrossRef]

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
[CrossRef]

Jeppesen, P.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
[CrossRef]

Jin, W.

Kenney-Wallace, G. A.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980)

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
[CrossRef] [PubMed]

G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, F. Larr, B. J. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003)

Larr, F.

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, "Reduction of Fresnel back-reflections at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007)
[CrossRef]

Limpert, J.

Luan, F.

Ludvigsen, H.

Mangan, B. J.

Monro, T. M.

Noda, J.

Nolte, S.

Okamoto, K.

Ortac¸, B.

Petersen, J. C.

Peucheret, C.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
[CrossRef]

Pl¨otner, M.

Poletti, F.

Richardson, D. J.

Ritari, T.

Russell, P. St. J.

Sabert, H.

Sala, K. L.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980)

Sasaki, Y.

Schreiber, T.

Shirakawa, A.

Simonsen, H. R.

Sørensen, T.

T¨unnermann, A.

Takada, K.

Tanisho, M.

Thapa, R.

Tuominen, J.

Ueda, K.

Wang, Y.

Washburn, B. R.

Xiao, L.

Zellmer, H.

Zhao, C. L.

Zsigri, B.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
[CrossRef]

Electron. Lett. (1)

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, "10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm," Electron. Lett. 41, 27-29 (2005)
[CrossRef]

IEEE J. Quantum Electron. (1)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW autocorrelation measurements of picosecond laser pulses," IEEE J. Quantum Electron. QE-16, 990-996 (1980)

IEEE Photon. Technol. Lett. (1)

F. Couny, F. Benabid, and P. S. Light, "Reduction of Fresnel back-reflections at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007)
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Nature (London) (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient gas cells using hollow-core photonic crystal fibres," Nature (London) 434, 488-491 (2005)
[CrossRef] [PubMed]

Opt. Express (7)

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2006)
[CrossRef]

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, "Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells," Opt. Express 14, 9576-9583 (2006)
[CrossRef] [PubMed]

B. Ortac¸, M. Pl¨otner, T. Schreiber, J. Limpert, and A. T¨unnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers," Opt. Express 15, 15595-15602 (2007)
[CrossRef]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. T¨unnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003)
[CrossRef] [PubMed]

A. Shirakawa, M. Tanisho, and K. Ueda, "Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber," Opt. Express 14, 12039-12048 (2006)
[CrossRef] [PubMed]

G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, F. Larr, B. J. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003)

F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005)
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (3)

R. K. Olsson, T. V. Andersen, L. Leick, V. Levitan, P. Uhd Jepsen, and D. Turchinovich, "Femtosecond allpolarization- maintaining fiber laser operating at 1028 nm," Proc. SPIE 7022, 70221E-1-5 (2008)
[CrossRef] [PubMed]

X. Yu, X. Zheng, and H. Zhang, "PMD measurement of hollow-core photonic bandgap fiber by investigating power penalty of optically generated microwave signals," IEEE Photon. Technol. Lett. 19, 279-281 (2007) 12. http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf
[CrossRef]

http://www.crystal-fibre.com/datasheets/HC-1060-02.pdfQ1

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM image of the HC-PCF fiber. Courtesy of B.J.Mangan, Crystal Fibre A/S.

Fig. 2.
Fig. 2.

Autocorrelations of laser pulses compressed in a HC-PCF spliced to the laser output PM-SMF with a splice loss of 0.42 dB and PER=0.2 dB. The autocorrelations were measured for polarization orientation angles θ=00,450, and 900 with respect to the principle axis of the HC-PCF.

Fig. 3.
Fig. 3.

Typical transmission change during the splice procedure, resulting in low-loss (here: splice loss 0.52 dB, PER 18.1 dB) and high-loss (here: splice loss 1.26 dB, PER 14.2 dB) splices. 0th fuse - fibers are brought into close mechanical contact ensuring best transmission and PER. 1st, 2nd, and 3rd fuses are made with the parameters shown in Table 1.

Fig. 4.
Fig. 4.

Visual images of the splices made under laser illumination, coming from the PM-SMF. (a) Splice loss of 0.31 dB, PER of 19.5 dB; (b) Splice loss of 0.6 dB, PER of 19.1 dB. (c) Longer fuse times are applied, than shown in Table 1. Splice loss >3 dB, PER <8 dB. Circles mark the areas where escaping laser light is visible. Different apparent sizes of PM-SMF core areas are due to different orientations of stress rods relative to the camera.

Fig. 5.
Fig. 5.

Defects of HC-PCF cleave: (a) Fragment of a hollow core wall is chipped off. (b) A row of holes in PBG structure is damaged. Courtesy of L. Wei, DTU Fotonik.

Fig. 6.
Fig. 6.

Symbols - observed dependency of PER on splice loss. Solid line - linear regression with the slope of -4.56. Dashed lines mark the positions of mean values for splice loss of 0.62 dB and PER of 19 dB for defect-free splices (splice loss <0.8 dB).

Tables (1)

Tables Icon

Table 1. Fuse parameters

Metrics