Abstract

We demonstrate an all-fiber photon-pair source with the highest coincidence-to-accidental ratio (CAR) reported to date in the fiber-optic telecom C-band. We achieve this through careful optimization of pair-production efficiency as well as careful characterization and minimization of all sources of background photons, including Raman generation in the nonlinear fiber, Raman generation in the single-mode fiber, and leakage of pump photons. We cool the nonlinear fiber to 4 K to eliminate most of the Raman scattering, and we reduce other noise photon counts through careful system design. This yields a CAR of 1300 at a pair generation rate of 2 kHz. This CAR is a factor of 12 higher than previously reported results in the C-band. Measured data agree well with theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
    [CrossRef]
  2. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
    [CrossRef] [PubMed]
  3. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
    [CrossRef] [PubMed]
  4. J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
    [CrossRef] [PubMed]
  5. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, "Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors," Opt. Express 15, 1322-1327 (2007).
    [CrossRef] [PubMed]
  6. H. Takesue and K. Inoue, "1.5-?m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  7. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
    [CrossRef] [PubMed]
  8. J. Fan, A. Dogariu, and L. J. Wang, "Generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 1530-1532 (2005).
    [CrossRef] [PubMed]
  9. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005).
    [CrossRef]
  10. J. Fan and A. Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007).
    [CrossRef] [PubMed]
  11. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005).
    [CrossRef] [PubMed]
  12. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U???Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14870-14886 (2007).
    [CrossRef] [PubMed]
  13. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007), Chap. 10.
  15. S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
    [CrossRef]

2007 (4)

2006 (2)

2005 (4)

2004 (1)

2003 (1)

Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
[CrossRef]

1997 (1)

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
[CrossRef]

1986 (1)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Chen, J.

Cohen, O.

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Dogariu, A.

Duligall, J.

Fan, J.

Franzen, D. L.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
[CrossRef]

Fulconis, J.

Garay-Palmett, K.

Hadfield, R. H.

Inoue, K.

Kumar, P.

Lee, K. F.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Li, X.

Liang, C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Lundeen, J. S.

McGuinness, H. J.

Mechels, S. E.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
[CrossRef]

Medic, M.

Migdall, A.

Nam, S. W.

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Rangel-Rojo, R.

Rarity, J. G.

Russell, P. St. J.

Schlager, J. B.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
[CrossRef]

Sharping, J.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Shih, Y.

Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
[CrossRef]

Takesue, H.

Voss, P.

Voss, P. L.

Wadsworth, W. J.

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Wang, L. J.

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. A (1)

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diagram of the stimulated four-wave mixing experiment used to characterize the nonlinear fiber and determine the optimal pump wavelength. FBS=fiber optic beamsplitter.

Fig. 2.
Fig. 2.

Plot of the measured stimulated FWM efficiency as a function of the pump wavelength for three different temperatures of the nonlinear fiber: 300 K, 77 K, and 4 K.

Fig. 3.
Fig. 3.

Diagram of the photon pair generation source. DSF=dispersion shifted fiber. EDFA=erbium-doped fiber amplifier. SSPD=superconducting single-photon detectors. The pump filters are all bandpass filters with 1 nm linewidth at a center wavelength of 1546.1 nm. The signal and idler filters are also bandpass filters with 1 nm linewidth at the signal and idler wavelengths.

Fig. 4.
Fig. 4.

Detector count rates resulting from Raman scattering in the SMF that connects the last pump filter and the first of the signal and idler filters. (a) We measured the count rates versus peak pump power for increasing lengths of additional SMF. Also shown are the linear curve fits for each SMF length. To avoid confusion, measurements are shown for only one of the two detector channels in the system. (b) Slopes of the curves from (a) with a linear curve fit. From the linear curve fit, we can determine the Raman coefficient and length of the SMF pigtails of the last pump filter and the first of the signal and idler filters.

Fig. 5.
Fig. 5.

Count rate versus pump power curve with quadratic curve fits. We use these curve fits to characterize the Raman gain of the DSF. The large difference between these two curves reflects the large difference in the quantum efficiency of the two detectors.

Fig. 6.
Fig. 6.

Histograms of the relative delay between clicks on the two detectors. At room temperature (a), we see a series of noticeable counts at a rate that is synchronous with the pump laser. When the DSF is cooled to 4 K (b), the Raman contribution is almost entirely eliminated, and the non-zero-delay counts are significantly reduced.

Fig. 7.
Fig. 7.

Comparison of measured and predicted coincidence-to-accidental ratios. Error bars show the statistical uncertainty resulting from the practical limits to the integration time.

Tables (1)

Tables Icon

Table 1. Examples of possible combinations of detected clicks that yield counts at the zero-delay peak recorded by the TIA, along with the pump powers at which these counts are expected to be strong contributors.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω i ,
P i ( L ) P s ( L ) P i ( L ) P s ( 0 ) = ( 1 + κ 2 4 g 2 ) sinh ( g L ) 2 ,
κ = k s + k i 2 k p + 2 γ P 0 = Δ k + 2 γ P 0 ,
Δ k β 2 Ω s 2 ,
g 2 = ( γ P 0 ) 2 ( κ 2 ) 2 .
P i ( L ) P s ( L ) ( γ P 0 L ) 2 sinh ( gL ) gL 2 .
I pair , u η u Δ ν D c ( γ P 0 L ) 2 sinh ( g L ) gL 2 ,
I R η u Δ ν P 0 LD c g R N ( Ω s ) = η u μ b ( Ω s ) f p ,
N ( Ω s ) = { φ ( T , Ω s ) for ω > ω p , φ ( T , Ω s ) + 1 for ω < ω p ,
φ ( T , Ω s ) = [ exp ( ћ Ω s k B T ) 1 ] 1
C η 1 η 2 Δ ν D c ( γ P 0 L ) 2 f p sinh ( gL ) gL 2 = η 1 η 2 μ ,
A η 1 η 2 [ μ + μ b , SMF , s + μ b , DSF , s + P d η 1 ] [ μ + μ b , SMF , i + μ b , DSF , i + P d η 2 ] ,

Metrics