Abstract

We demonstrate an all-fiber photon-pair source with the highest coincidence-to-accidental ratio (CAR) reported to date in the fiber-optic telecom C-band. We achieve this through careful optimization of pairproduction efficiency as well as careful characterization and minimization of all sources of background photons, including Raman generation in the nonlinear fiber, Raman generation in the single-mode fiber, and leakage of pump photons. We cool the nonlinear fiber to 4 K to eliminate most of the Raman scattering, and we reduce other noise photon counts through careful system design. This yields a CAR of 1300 at a pair generation rate of 2 kHz. This CAR is a factor of 12 higher than previously reported results in the C-band. Measured data agree well with theoretical predictions.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
    [CrossRef]
  2. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
    [CrossRef]
  3. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
    [CrossRef]
  4. J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
    [CrossRef]
  5. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, "Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors," Opt. Express 15, 1322-1327 (2007).
    [CrossRef]
  6. H. Takesue and K. Inoue, "1.5-?m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef]
  7. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
    [CrossRef]
  8. J. Fan, A. Dogariu, and L. J. Wang, "Generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 1530-1532 (2005).
    [CrossRef]
  9. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005).
    [CrossRef]
  10. J. Fan and A. Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007).
    [CrossRef]
  11. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005).
    [CrossRef]
  12. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U???Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14870-14886 (2007).
    [CrossRef]
  13. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007), Chap. 10.
  15. S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).

2007

2006

2005

2004

2003

Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
[CrossRef]

1997

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).

1986

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Chen, J.

Cohen, O.

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Dogariu, A.

Duligall, J.

Fan, J.

Franzen, D. L.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).

Fulconis, J.

Garay-Palmett, K.

Hadfield, R. H.

Inoue, K.

Kumar, P.

Lee, K. F.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Li, X.

Liang, C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Lundeen, J. S.

McGuinness, H. J.

Mechels, S. E.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).

Medic, M.

Migdall, A.

Nam, S. W.

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Rangel-Rojo, R.

Rarity, J. G.

Russell, P. St. J.

Schlager, J. B.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).

Sharping, J.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Shih, Y.

Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
[CrossRef]

Takesue, H.

Voss, P.

Voss, P. L.

Wadsworth, W. J.

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Wang, L. J.

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

S. E. Mechels, J. B. Schlager, and D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Natl. Inst. Stand. Technol. 102, 333-347 (1997).

Opt. Express

Opt. Lett.

Phys. Rev. A

Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Phys. Rev. Lett.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef]

Rep. Prog. Phys.

Y. Shih, "Entangled biphoton source - property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics