Abstract

We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  3. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
    [CrossRef]
  4. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  5. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  6. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  9. I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
    [CrossRef] [PubMed]
  10. I. Newton, Opticks or A Treatise of the Reflections, Refractions, Inflections, and Colours of Light (Dover Publications, New York, 1952), pp. 193-194, pp. 205-206.
  11. R. Y. Chiao, P. G. Kwait, and A. M. Steinberg, "Analogies between electron and photon tunneling: A proposed experiment to measure photon tunneling times," Physica B 175, 257-262 (1991).
    [CrossRef]
  12. B. Lee andW. Lee, "TM-polarized photon tunneling phase time in a frustrated-total-internal-reflection structure," J. Opt. Soc. Am. B 14, 777-781 (1997).
    [CrossRef]
  13. Y. Zhang, B. Fluegel, and A. Mascarenhas, "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light," Phys. Rev. Lett. 91, 157404 (2003).
    [CrossRef] [PubMed]
  14. H. Mizuta and T. Tanoue, The Physics and Application of Resonant Tunneling Diodes (Cambridge University Press, Cambridge, 1995).
    [CrossRef]
  15. A. Otto, "Calculations for an optical polarizer operating with frustrated total reflection," Optik 29, 244-257 (1969).
  16. A. Salw???en and L. Stensland, "Spectral filtering possibilities of surface plasma oscillations in thin metal films," Opt. Commun. 2, 9-13 (1970).
    [CrossRef]
  17. R. Dragila, B. Luther-Davies, and S. Vukovic, "High Transparancy of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
    [CrossRef] [PubMed]
  18. S. Hayashi, H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Rev. 6, 204-210 (1999).
    [CrossRef]
  19. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2000).
    [CrossRef]
  20. S. A. Darmanyan, and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
    [CrossRef]
  21. D. G???erard, L. Salomon, F. de Fornel, and A. V. Zayats, "Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and supression of SPP radiative losses," Opt. Express 12, 3652-3662 (2004).
    [CrossRef] [PubMed]
  22. S. A. Darmanyan, M. Nevi`ere, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polaiton modes," Phys. Rev. B 70, 075103 (2004).
    [CrossRef]
  23. L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B 74, 155407 (2006).
    [CrossRef]
  24. B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
    [CrossRef]
  25. I. R. Hooper, T. W. Preist, and J. R. Sambles, "Making Tunnel Barriers (Including Metals) Transparent," Phys. Rev. Lett. 97, 053902 (2006).
    [CrossRef] [PubMed]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  27. D. Y. Lei, and H. C. Ong, "Enhanced forward emission from ZnO via surface plasmons," Appl. Phys. Lett. 91, 211107 (2007).
    [CrossRef]

2007 (5)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
[CrossRef]

D. Y. Lei, and H. C. Ong, "Enhanced forward emission from ZnO via surface plasmons," Appl. Phys. Lett. 91, 211107 (2007).
[CrossRef]

2006 (5)

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B 74, 155407 (2006).
[CrossRef]

I. R. Hooper, T. W. Preist, and J. R. Sambles, "Making Tunnel Barriers (Including Metals) Transparent," Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2004 (3)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. G???erard, L. Salomon, F. de Fornel, and A. V. Zayats, "Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and supression of SPP radiative losses," Opt. Express 12, 3652-3662 (2004).
[CrossRef] [PubMed]

S. A. Darmanyan, M. Nevi`ere, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polaiton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

2003 (3)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Y. Zhang, B. Fluegel, and A. Mascarenhas, "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light," Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

S. A. Darmanyan, and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

2000 (1)

1999 (1)

S. Hayashi, H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Rev. 6, 204-210 (1999).
[CrossRef]

1997 (1)

1991 (1)

R. Y. Chiao, P. G. Kwait, and A. M. Steinberg, "Analogies between electron and photon tunneling: A proposed experiment to measure photon tunneling times," Physica B 175, 257-262 (1991).
[CrossRef]

1985 (1)

R. Dragila, B. Luther-Davies, and S. Vukovic, "High Transparancy of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

1970 (1)

A. Salw???en and L. Stensland, "Spectral filtering possibilities of surface plasma oscillations in thin metal films," Opt. Commun. 2, 9-13 (1970).
[CrossRef]

1969 (1)

A. Otto, "Calculations for an optical polarizer operating with frustrated total reflection," Optik 29, 244-257 (1969).

Avrutsky, I.

Belov, P. A.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Blaikie, R. J.

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B 74, 155407 (2006).
[CrossRef]

Chiao, R. Y.

R. Y. Chiao, P. G. Kwait, and A. M. Steinberg, "Analogies between electron and photon tunneling: A proposed experiment to measure photon tunneling times," Physica B 175, 257-262 (1991).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Darmanyan, S. A.

S. A. Darmanyan, M. Nevi`ere, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polaiton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

S. A. Darmanyan, and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Dragila, R.

R. Dragila, B. Luther-Davies, and S. Vukovic, "High Transparancy of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Fluegel, B.

Y. Zhang, B. Fluegel, and A. Mascarenhas, "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light," Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Hao, Y.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Hayashi, S.

S. Hayashi, H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Rev. 6, 204-210 (1999).
[CrossRef]

Hooper, I. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, "Making Tunnel Barriers (Including Metals) Transparent," Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Hou, B.

B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
[CrossRef]

Hung, Y-J.

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kochergin, V.

Kurokawa, H.

S. Hayashi, H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Rev. 6, 204-210 (1999).
[CrossRef]

Kwait, P. G.

R. Y. Chiao, P. G. Kwait, and A. M. Steinberg, "Analogies between electron and photon tunneling: A proposed experiment to measure photon tunneling times," Physica B 175, 257-262 (1991).
[CrossRef]

Lee, B.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lee, W.

Lei, D. Y.

D. Y. Lei, and H. C. Ong, "Enhanced forward emission from ZnO via surface plasmons," Appl. Phys. Lett. 91, 211107 (2007).
[CrossRef]

Leng, Y.

B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
[CrossRef]

Lin, L.

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B 74, 155407 (2006).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Luther-Davies, B.

R. Dragila, B. Luther-Davies, and S. Vukovic, "High Transparancy of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Mascarenhas, A.

Y. Zhang, B. Fluegel, and A. Mascarenhas, "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light," Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Nevi`ere, M.

S. A. Darmanyan, M. Nevi`ere, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polaiton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

Oga, H.

S. Hayashi, H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Rev. 6, 204-210 (1999).
[CrossRef]

Ong, H. C.

D. Y. Lei, and H. C. Ong, "Enhanced forward emission from ZnO via surface plasmons," Appl. Phys. Lett. 91, 211107 (2007).
[CrossRef]

Otto, A.

A. Otto, "Calculations for an optical polarizer operating with frustrated total reflection," Optik 29, 244-257 (1969).

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Preist, T. W.

I. R. Hooper, T. W. Preist, and J. R. Sambles, "Making Tunnel Barriers (Including Metals) Transparent," Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Reeves, R. J.

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B 74, 155407 (2006).
[CrossRef]

Salw???en, A.

A. Salw???en and L. Stensland, "Spectral filtering possibilities of surface plasma oscillations in thin metal films," Opt. Commun. 2, 9-13 (1970).
[CrossRef]

Sambles, J. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, "Making Tunnel Barriers (Including Metals) Transparent," Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Steinberg, A. M.

R. Y. Chiao, P. G. Kwait, and A. M. Steinberg, "Analogies between electron and photon tunneling: A proposed experiment to measure photon tunneling times," Physica B 175, 257-262 (1991).
[CrossRef]

Stensland, L.

A. Salw???en and L. Stensland, "Spectral filtering possibilities of surface plasma oscillations in thin metal films," Opt. Commun. 2, 9-13 (1970).
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Vukovic, S.

R. Dragila, B. Luther-Davies, and S. Vukovic, "High Transparancy of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Wen, H.

B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
[CrossRef]

Wen, W.

B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Zayats, A. V.

S. A. Darmanyan, M. Nevi`ere, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polaiton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

S. A. Darmanyan, and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, B. Fluegel, and A. Mascarenhas, "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light," Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Zhao, Y.

Appl. Phys. A (1)

B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys. A 87, 217-221 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

D. Y. Lei, and H. C. Ong, "Enhanced forward emission from ZnO via surface plasmons," Appl. Phys. Lett. 91, 211107 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Opt. Commun. (1)

A. Salw???en and L. Stensland, "Spectral filtering possibilities of surface plasma oscillations in thin metal films," Opt. Commun. 2, 9-13 (1970).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optical Rev. (1)

S. Hayashi, H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Rev. 6, 204-210 (1999).
[CrossRef]

Optik (1)

A. Otto, "Calculations for an optical polarizer operating with frustrated total reflection," Optik 29, 244-257 (1969).

Phys. Rev. B (5)

S. A. Darmanyan, and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

S. A. Darmanyan, M. Nevi`ere, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polaiton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B 74, 155407 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

I. R. Hooper, T. W. Preist, and J. R. Sambles, "Making Tunnel Barriers (Including Metals) Transparent," Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

R. Dragila, B. Luther-Davies, and S. Vukovic, "High Transparancy of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Y. Zhang, B. Fluegel, and A. Mascarenhas, "Total Negative Refraction in Real Crystals for Ballistic Electrons and Light," Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Physica B (1)

R. Y. Chiao, P. G. Kwait, and A. M. Steinberg, "Analogies between electron and photon tunneling: A proposed experiment to measure photon tunneling times," Physica B 175, 257-262 (1991).
[CrossRef]

Science (5)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction- Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Other (3)

I. Newton, Opticks or A Treatise of the Reflections, Refractions, Inflections, and Colours of Light (Dover Publications, New York, 1952), pp. 193-194, pp. 205-206.

H. Mizuta and T. Tanoue, The Physics and Application of Resonant Tunneling Diodes (Cambridge University Press, Cambridge, 1995).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for simultaneous photon reflection and tunneling measurements. Inset: a sample structure of a 1D alternating Al/dielectric metamaterial.

Fig. 2.
Fig. 2.

Simultaneously measured ATR (blue) and PT (red) spectra of d=40 nm samples with (a) N=1, (b) N=2, and (c) N=3. Solid lines correspond to the p-pol and dashed lines to the s-pol. Arrows show θc =55° at an interface between SFL11 and SiO2.

Fig. 3.
Fig. 3.

Numerically simulated ATR (blue) and PT (red) spectra of d=40 nm samples with (a) N=1, (b) N=2, and (c) N=3. Solid lines correspond to the p-pol and dashed lines to the s-pol.

Fig. 4.
Fig. 4.

Shift variation of the RPT peak from the reflection dip (Δθ) for various d is plotted as a function of number of Al layers, N. Solid squares are assigned to experimental results. Crosses correspond to the numerical results using refractive index of Al described in the Experimental section. Open circles also correspond to the numerical results but using the refractive index of Al multiplied by 0.8.

Fig. 5.
Fig. 5.

Measured and calculated transmission maximum for various d is plotted as a function of number of Al layers, N.

Tables (1)

Tables Icon

Table 1. Experimental results for the d=40 nm samples are summarized. The number of Al layers (N), the total mass thickness of Al (dAl total =d×N), transmission maximum at RPT (TRPT max ), far-field transmittance at 633nm measured using a UV-Vis spectrometer (TSpe 633), and the shift variation (Δθ).

Metrics