Abstract

A new way to make high speed modulators using Si waveguides is demonstrated. The hybrid silicon evanescent electroabsorption modulator with offset AlGaInAs quantum wells has an extinction ratio over 10dB and modulation bandwidth of 10GHz. The modulator has a clean open eye at 10Gb/s with sub-volt drive.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  2. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fedeli, and J. F. Damlencourt, "Optical modulation by carrier depletion in a silicon PIN diode," Opt. Express 14, 10838-10843 (2006).
    [CrossRef] [PubMed]
  3. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  5. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
    [CrossRef] [PubMed]
  6. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, Jr., and D. A. B. Miller, "Optical modulator on silicon employing germanium quantum wells," Opt. Express 15, 5851-5859 (2007).
    [CrossRef] [PubMed]
  7. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
    [CrossRef] [PubMed]
  8. H. Park, Y.-h. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector," Opt. Express 15, 13539-13546 (2007).
    [CrossRef] [PubMed]
  9. J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
    [CrossRef]
  10. J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
    [CrossRef]
  11. H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
    [CrossRef]
  12. K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
    [CrossRef]
  13. D. Liang, E. A. Lucero, and J. E. Bowers, "Highly efficient vertical outgassing channels for robust, void-free, low-temperature direct wafer bonding," The 35th Conference on the Physics and Chemistry of Semiconductor Interfaces, Santa Fe, NM, Jan. 2008.

2007 (2)

2006 (4)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fedeli, and J. F. Damlencourt, "Optical modulation by carrier depletion in a silicon PIN diode," Opt. Express 14, 10838-10843 (2006).
[CrossRef] [PubMed]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

2004 (2)

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

2002 (1)

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

1994 (1)

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Aoki, M.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Barton, J.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Bowers, J. E.

Cassan, E.

Chen, R. T.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
[CrossRef]

Chen, X. N.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
[CrossRef]

Cohen, O.

Coldren, L.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Damlencourt, J. F.

Fang, A. W.

Fedeli, J. M.

Fidaner, O.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Fukano, H.

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
[CrossRef]

Gu, L. L.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
[CrossRef]

Halbwax, M.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Harris, J. S.

Itaya, Y.

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Jiang, W.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
[CrossRef]

Jiang, Y. Q.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
[CrossRef]

Johansson, L.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Jones, R.

Kamins, T. I.

Kato, K.

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Kondo, Y.

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
[CrossRef]

Kozen, A.

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Kuo, Y.-h.

Laval, S.

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Le Roux, X.

Liao, L.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Liu, A. S.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Maine, S.

Marris-Morini, D.

Mašanovi??, M. L.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Miller, D. A. B.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Muramoto, Y.

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Nagatsuma, T.

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Nicolaescu, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Ohtoshi, T.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Page-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Paniccia, M.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pascal, D.

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Raring, J.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Roth, J. E.

Rubin, D.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schaevitz, R. K.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Shimizu, J.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Shirai, M.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Skogen, E.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Sysak, M. N.

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Taike, A.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Tamura, M.

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
[CrossRef]

Tsuchiya, T.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Tsuji, S.

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

Vivien, L.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Yaita, M.

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

Yamanaka, T.

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
[CrossRef]

Zsidri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, "Advantages of optical modulators with InGaAlAs / InGaAlAs MQW structure," Electron. Lett. 38, 821-822 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (1)

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-low-driving-voltage electroabsorption modulators operating at 40Gb/s," IEEE J. Lightwave Technol. 24, 2219-2224 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, "110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-?m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
[CrossRef]

J. Raring, E. Skogen, L. Johansson, M. N. Sysak, J. Barton, M. L. Mašanovi??, L. Coldren, "Demonstration of Widely-Tunable Single-Chip 10 Gb/s Laser-Modulators Using Multiple-Bandgap InGaAsP Quantum-Well Intermixing," IEEE Photon. Technol. Lett. 16, 1613-1615 (2004).
[CrossRef]

Nature (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electrooptic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Other (2)

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1-3 (2005).
[CrossRef]

D. Liang, E. A. Lucero, and J. E. Bowers, "Highly efficient vertical outgassing channels for robust, void-free, low-temperature direct wafer bonding," The 35th Conference on the Physics and Chemistry of Semiconductor Interfaces, Santa Fe, NM, Jan. 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic diagram of device cross section and (b) SEM picture of the tapered hybrid waveguide. The picture was taken before the spin-coating of SU8 polymer. All structure elements are formed except SU8 and probe metal.

Fig. 2.
Fig. 2.

Photocurrent at different bias voltages.

Fig. 3.
Fig. 3.

Extinction ratio at 1550nm for 100µm and 250µm long EAMs.

Fig. 4.
Fig. 4.

Small signal modulation response of 100µm and 250µm EAMs.

Fig. 5.
Fig. 5.

10Gb/s NRZ eye diagram from 100µm and 250µm EAMs.

Fig. 6.
Fig. 6.

Modulation response of a 100µm device made with 2µm-wide MQW region. (inset) 10Gb/s NRZ eye diagram coming out of the EAM with 3.2V swing.

Tables (1)

Tables Icon

Table 1. III–V epitaxial layer structure.

Metrics