Abstract

We evaluate the field distribution in the focal spot of the fundamental Gaussian beam as well as radially and azimuthally polarized doughnut beams focused inside a planar metallic sub-wavelength microcavity using a high numerical aperture objective lens. We show that focusing in the cavity results in a much tighter focal spot in longitudinal direction compared to free space and in spatial discrimination between longitudinal and in-plane field components. In order to verify the modeling results we experimentally monitor excitation patterns of fluorescence beads inside the λ/2-cavity and find them in full agreement to the modeling predictions. We discuss the implications of the results for cavity assisted single molecular spectroscopy and intra-cavity single molecular imaging.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner "A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics," J. Phys. Chem. B 106, 910-927 (2002).
    [CrossRef]
  2. W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003).
    [CrossRef]
  3. F. Kulzer and M. Orrit, "Single-Molecule Optics," Ann. Rev. Phys. Chem. 55, 585-611 (2004).
    [CrossRef]
  4. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
    [CrossRef] [PubMed]
  5. H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
    [CrossRef] [PubMed]
  6. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
    [CrossRef] [PubMed]
  7. M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
    [CrossRef] [PubMed]
  8. M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
    [CrossRef]
  9. M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, "Highly efficient, tunable single photon source based on single molecules," Appl. Phys. Lett. 90, 183122-1-3 (2007).
    [CrossRef]
  10. M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
    [CrossRef] [PubMed]
  11. P. Andrew and W. L. Barnes, "Forster energy transfer in an optical microcavity," Science 290, 785-788 (2000).
    [CrossRef] [PubMed]
  12. M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
    [CrossRef]
  13. D. P. Biss and T. G. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
    [CrossRef] [PubMed]
  14. A.S. van de Nes, P. R. T. Munro, S. F. Pereira, J. J. M. Braat, and P. Török, "Cylindrical vector beam focusing through a dielectric interface: comment," Opt. Express 12,967-969 (2003).
    [CrossRef]
  15. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004).
    [CrossRef] [PubMed]
  16. H. Rigneault, S. Monneret, and C. I. Westbrook, "Resonant focusing in a planar microcavity," J. Opt. Soc. Am. B 15,2712-2715 (1998).
    [CrossRef]
  17. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
    [CrossRef]
  18. L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge University Press 2006).
  19. M. Born and E. Wolf, Principles of optics (Cambridge University Press 1999).
  20. N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, "Investigation of polarization effects for highnumerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead," Opt. Express 13,10440-10447 (2005).
    [CrossRef] [PubMed]
  21. J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25,634-636 (2000).
    [CrossRef]
  22. A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy," Opt. Express 15,8532-8542 (2007).
    [CrossRef] [PubMed]

2007 (2)

M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
[CrossRef] [PubMed]

A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy," Opt. Express 15,8532-8542 (2007).
[CrossRef] [PubMed]

2006 (2)

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

2005 (3)

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, "Investigation of polarization effects for highnumerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead," Opt. Express 13,10440-10447 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003).
[CrossRef]

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003).
[CrossRef]

A.S. van de Nes, P. R. T. Munro, S. F. Pereira, J. J. M. Braat, and P. Török, "Cylindrical vector beam focusing through a dielectric interface: comment," Opt. Express 12,967-969 (2003).
[CrossRef]

2002 (1)

W. E. Moerner "A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics," J. Phys. Chem. B 106, 910-927 (2002).
[CrossRef]

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

D. P. Biss and T. G. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

1998 (1)

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Andrew, P.

P. Andrew and W. L. Barnes, "Forster energy transfer in an optical microcavity," Science 290, 785-788 (2000).
[CrossRef] [PubMed]

Barnes, W. L.

P. Andrew and W. L. Barnes, "Forster energy transfer in an optical microcavity," Science 290, 785-788 (2000).
[CrossRef] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Billy, L.

Biss, D. P.

Bokor, N.

Braat, J. J. M.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

D. P. Biss and T. G. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
[CrossRef] [PubMed]

D., W. E.

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003).
[CrossRef]

Deussen, M.

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

Enderlein, J.

Failla, A. V.

A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy," Opt. Express 15,8532-8542 (2007).
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

Failla, A.V.

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

Fujii, M.

Göbel, E. O.

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

Guss, W.

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

Hartschuh, A.

M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, "Highly efficient, tunable single photon source based on single molecules," Appl. Phys. Lett. 90, 183122-1-3 (2007).
[CrossRef]

Hopmeier, M.

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

Iketaki, Y.

Jäger, S.

Korlacki, R.

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, "Highly efficient, tunable single photon source based on single molecules," Appl. Phys. Lett. 90, 183122-1-3 (2007).
[CrossRef]

Kulzer, F.

F. Kulzer and M. Orrit, "Single-Molecule Optics," Ann. Rev. Phys. Chem. 55, 585-611 (2004).
[CrossRef]

Mahrt, R. F.

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

Meixner, A.

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

Meixner, A. J.

A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy," Opt. Express 15,8532-8542 (2007).
[CrossRef] [PubMed]

M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, "Highly efficient, tunable single photon source based on single molecules," Appl. Phys. Lett. 90, 183122-1-3 (2007).
[CrossRef]

Moerner, W. E.

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003).
[CrossRef]

W. E. Moerner "A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics," J. Phys. Chem. B 106, 910-927 (2002).
[CrossRef]

Monneret, S.

Munro, P. R. T.

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Orrit, M.

F. Kulzer and M. Orrit, "Single-Molecule Optics," Ann. Rev. Phys. Chem. 55, 585-611 (2004).
[CrossRef]

Pereira, S. F.

Piwonski, H.

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

Qian, H

M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
[CrossRef] [PubMed]

Qian, H.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Rigneault, H.

Schleifenbaum, F.

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

Sepiol, J.

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

Steiner, M.

A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy," Opt. Express 15,8532-8542 (2007).
[CrossRef] [PubMed]

M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, "Highly efficient, tunable single photon source based on single molecules," Appl. Phys. Lett. 90, 183122-1-3 (2007).
[CrossRef]

Stupperich, C.

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

Török, P.

van de Nes, A. S.

van de Nes, A.S.

Waluk, J.

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

Watanabe, T.

Westbrook, C. I.

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Züchner, T.

Ann. Rev. Phys. Chem. (1)

F. Kulzer and M. Orrit, "Single-Molecule Optics," Ann. Rev. Phys. Chem. 55, 585-611 (2004).
[CrossRef]

ChemPhysChem (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem 6,2190-2196 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

H. Piwonski, C. Stupperich, A. Hartschuh, J. Sepiol, A. Meixner, and J. Waluk, "Imaging of tautomerism in a single molecule," J. Am. Chem. Soc. 127, 5302-5303 (2005).
[CrossRef] [PubMed]

J. Lumin. (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A.V. Failla, A. Hartschuh, and A. J. Meixner, "A new microcavity design for single molecule detection," J. Lumin. 119-120,167-172 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

W. E. Moerner "A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics," J. Phys. Chem. B 106, 910-927 (2002).
[CrossRef]

Nano. Lett. (2)

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano. Lett. 6, 1374 -1378 (2006).
[CrossRef] [PubMed]

M. Steiner, H Qian, A. Hartschuh, and A. J. Meixner, "Controlling nonequilibrium phonon populations in single-walled carbon nanotubes," Nano. Lett. 7, 2239-2242 (2007).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys Rev. Lett. (1)

M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Phys Rev. Lett. 82, 4118- 4121 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Rev. Sci. Instrum. (1)

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003).
[CrossRef]

Science (1)

P. Andrew and W. L. Barnes, "Forster energy transfer in an optical microcavity," Science 290, 785-788 (2000).
[CrossRef] [PubMed]

Other (3)

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, "Highly efficient, tunable single photon source based on single molecules," Appl. Phys. Lett. 90, 183122-1-3 (2007).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge University Press 2006).

M. Born and E. Wolf, Principles of optics (Cambridge University Press 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Field intensity distribution in the focus of RPDB in a homogeneous medium (n r=1.518); (a), (c) cross-section of in-plane field components in x-y and x-z planes, respectively; (b), (d) cross-sections for longitudinal fields components in x-y and x-z plane, respectively. To reinforce the comparison to following Figures 3 and 4 the boundaries for a 120 nm cavity are shown in (c) and (d) as white dash lines.

Fig. 2.
Fig. 2.

Intra-cavity transmission coefficient of the λ/2-microcavity for in-plane (solid line) and longitudinal (dash line) field components according to (9) and (10), respectively, versus longitudinal (z) coordinate, normalized to the cavity thickness (LC). In-plane components have their maximum in the center of the cavity whereas longitudinal components are concentrated at the cavity boundaries.

Fig. 3.
Fig. 3.

Field intensity distribution for RPDB and APDB focused inside a 111.5 nm thick Fabri-Perot microcavity satisfying the λ/2-condition at a wavelength of 488 nm. The beam propagation is from bottom to top; (a), (b) RPDB in-plane and longitudinal field components, respectively, cross-section in x-z plane; (c) APDB in-plane field components, cross-section in x-z plane. The distributions are rotationally symmetric with respect to the propagation direction (z axis). Parameters for computation: nic =1.518, Lc =111.5 nm, λ=488 nm, objective NA=1.25, thickness of metallic (silver) mirrors 50 nm.

Fig. 4.
Fig. 4.

Field intensity distribution for x-polarized fundamental Hermit Gaussian Beam focused inside a 111.5 nm thick Fabri-Perot microcavity satisfying the λ/2-condition at a wavelength of 488 nm; (a), (b) intensity of the dominant E x (in-plane) and E z (longitudinal) field components, respectively, cross-section in x-z plane; (c) total intensity in the focal spot, cross-section in x-y plane through the center of the cavity. The parameters for the calculation are given in Fig. 3 caption.

Fig. 5.
Fig. 5.

Field intensity distribution for RPDB and APDB focused inside a 150 nm thick Fabri-Perot microcavity corresponding to a λ/2-condition for 600 nm wavelength, i.e. larger than in Fig. 3. Cross-sections along x-z plane for RPDB in-plane (a), longitudinal (b), and APDB (c) field components. The parameters for the calculation are given in Fig. 3 caption.

Fig. 6.
Fig. 6.

(a) Microcavity sample. (CS)-Microscope cover slip, (M1) - Bottom Ag mirror (40 nm), (SL) - 30 nm silica spacer layer, (PVA) - PVA layer doped with 20 nm fluorescent beads, (OG) - Optical glue, (M2) - Upper Ag mirror 60 nm, (L) - Lens ; (b) White light transmission pattern of the cavity sample taken with a wide field microscope (magnification 5 times). The inner transmission ring that is used to monitor excitation patterns of the fluorescence beads corresponds to the cavity thickness satisfying the λ/2-condition in the visible spectra range.

Fig. 7.
Fig. 7.

Raster scanning confocal excitation patterns for the fluorescent beads in the λ/2 - cavity obtained using RPDB (a)–(e) and APDB (m)–(q) excitation. These patterns are measured at five different cavity thicknesses resonant with distinct wavelength (given in the figures) from the bead emission spectra. The Excitation PSF for RPDB (g)–(k) and APDB (s)–(w) calculated for the cavity thicknesses correspondent to respective experimental patterns assuming a constant 60 nm shift from the bottom cavity mirror. The resulting relative shift from the bottom mirror for each of the calculated patterns is given in the figures. Free space excitation patterns for the beads obtained using RPDB (f) and APDB (r) excitation together with the calculated free space excitation PSF for RPDB (l) and APDB (x). Parameters for calculation: objective NA 1.25, excitation wavelength 488 nm, experimentally measured beam waist 1.15 mm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E HG = E 0 ikfe ikf 2 ( [ L 0 , 0 , 0 ( ρ , z ) + L 2 , 0 , 0 ( ρ , z ) cos ( 2 φ ) L 2 , 0 , 0 ( ρ , z ) sin ( 2 φ ) 0 ] + [ L 0 , 1 , 0 ( ρ , z ) L 2 , 1 , 0 ( ρ , z ) cos ( 2 φ ) L 2 , 1 , 0 ( ρ , z ) sin ( 2 φ ) 2 i L 1 , 0 , 1 ( ρ , z ) cos ( φ ) ] ) .
L n , m , l ( ρ , z ) = 0 θ MAX f w ( θ ) J n ( kn r ρ sin ( θ ) ) exp ( ik z n r z ) cos ( θ ) m + 1 2 sin ( θ ) l + 1 d θ .
f w ( θ ) = exp ( 1 f 0 2 sin ( θ ) 2 sin ( θ max ) 2 ) .
E RPDB = E 0 if 2 k exp ( i k f ) 2 w 0 ( 4 i L 1 , 1 , 1 ( ρ , z ) cos ( φ ) 4 i L 1 , 1 , 1 ( ρ , z ) sin ( φ ) 4 L 0 , 0 , 2 ( ρ , z ) ) .
E APDB = E 0 if 2 k exp ( i k f ) 2 w 0 ( 4 i L 1 , 0 , 1 ( ρ , z ) sin ( φ ) 4 i L 1 , 0 , 1 ( ρ , z ) cos ( φ ) 0 ) .
L n , m , l α , β ( ρ , z ) = 0 θ MAX f w ( θ ) J n ( kn r ρ sin ( θ ) ) f β α ( z , θ , L c ) cos ( θ ) m + 1 2 sin ( θ ) l + 1 d θ .
f x , y s ( z , θ , L c ) = t 1 s ( θ ) exp ( ik z n ic z ) + r 2 s ( θ ) exp [ ik z n ic ( L z ) ] 1 r 1 s ( θ ) r 2 s ( θ ) exp ( 2 ik z n ic L ) ,
f z s ( z , θ , L c ) = 0 ,
f x , y p ( z , θ , L c ) = t 1 p ( θ ) exp ( ik z n ic z ) r 2 p ( θ ) exp [ ik z n ic ( L z ) ] 1 r 1 p ( θ ) r 2 p ( θ ) exp ( 2 ik z n ic L ) ,
f z p ( z , θ , L c ) = t 1 p ( θ ) exp ( ik z n ic z ) + r 2 p ( θ ) exp [ ik z n ic ( L z ) ] 1 r 1 p ( θ ) r 2 p ( θ ) exp ( 2 ik z n ic L ) .
I PSF = I z + 0.5 I ρ ,

Metrics