Abstract

We studied the potentials of All Optical Switches (AOS) based on the intensity-dependent coupling and decoupling of light into the SPP modes (Surface Plasmon Polaritons) of a sinusoidally corrugated thin metal film (TMF), due to Kerr induced refractive index changes of the surrounding dielectrics. The ideal device has two spatially separated outputs, collecting the reflected and transmitted light and the active volume can be as small as 10-2 mm3. Gold and PTS (poly-(2,4-hexadiyne-1,6-diol bis(p-toluene sulfonate) are the materials considered. Losses are limited to 1.5 dB, while a 20 dB extinction ratio per gate has been theoretically demonstrated with signal pulsewidths of 5–10 ps, using a maximum optical switching peak power of 11 kW.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
    [CrossRef] [PubMed]
  2. V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426-085437 (2007).
    [CrossRef]
  3. W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005).
    [CrossRef] [PubMed]
  4. Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
    [CrossRef]
  5. A. Giannattasio, I. R. Hooper, and W. L. Sambles, " Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express,  12, 5881-5886 (2004).
    [CrossRef] [PubMed]
  6. I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-045435 (2004).
    [CrossRef]
  7. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
    [CrossRef]
  8. R. Dragila. B. Luther-Davies, and S.Vukovic, "High Transparency of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
    [CrossRef] [PubMed]
  9. E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
    [CrossRef]
  10. J. Wang, J. Sun, and Q. Sun, "Experimental observation of a 1.5 ?m band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation," Opt. Lett. 31, 1711-1713 (2006).
    [CrossRef] [PubMed]
  11. J. Wang, J. Sun, and Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation," Opt. Express 15, 1690-1699 (2007).
    [CrossRef] [PubMed]
  12. M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
    [CrossRef]
  13. J. Chandezon, M. T. Dupuis, and G. Cornet, "Multicoated gratings: a differential formalism applicable in the entire optical region," J. Opt. Soc. Am. 72, 839-846 (1982).
    [CrossRef]
  14. A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
    [CrossRef]
  15. R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
    [CrossRef]
  16. L. G. Schulz, "The optical constants of silver, gold, copper and aluminum. I. the absorption coefficient k," J. Opt. Soc. Am. 44, 357-362 (1954).
    [CrossRef]
  17. L. G. Schulz, and F. R. Tangherlini, "Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n," J. Opt. Soc. Am. 44, 362-368 (1954).
    [CrossRef]
  18. S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
    [CrossRef]
  19. A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000).
    [CrossRef]
  20. S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
    [CrossRef]
  21. G. Margheri,A. Mannoni, and F. Quercioli, "High resolution angular and displacement sensing based on the excitation of surface plasma waves," Appl. Opt. 36, 4521-4525 (1997).
    [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constant of Solid III, (Academic Press,1998).
  23. S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
    [CrossRef]
  24. M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.
  25. G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
    [CrossRef]
  26. V. M. Shalaev, and A. K. Sarychev, "Nonlinear optics of random metal-dielectric films," Phys. Rev. B 57, 13265-13288 (1998).
    [CrossRef]
  27. R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
    [CrossRef] [PubMed]
  28. F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
    [CrossRef] [PubMed]
  29. S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
    [CrossRef]

2008 (1)

E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
[CrossRef]

2007 (3)

V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426-085437 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation," Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Giannattasio, I. R. Hooper, and W. L. Sambles, " Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express,  12, 5881-5886 (2004).
[CrossRef] [PubMed]

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-045435 (2004).
[CrossRef]

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

2003 (1)

G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
[CrossRef]

2001 (2)

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

2000 (2)

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000).
[CrossRef]

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

1999 (1)

S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
[CrossRef]

1998 (1)

V. M. Shalaev, and A. K. Sarychev, "Nonlinear optics of random metal-dielectric films," Phys. Rev. B 57, 13265-13288 (1998).
[CrossRef]

1997 (1)

1996 (2)

R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
[CrossRef]

1995 (1)

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

1992 (1)

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

1990 (1)

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
[CrossRef]

1985 (1)

R. Dragila. B. Luther-Davies, and S.Vukovic, "High Transparency of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

1982 (1)

1954 (2)

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
[CrossRef]

Boyd, R. W.

R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

Cao, Z.

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

Chandezon, J.

Chen, G.

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

Chen, Y.

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000).
[CrossRef]

Collier, J.

M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.

Cornet, G.

Crook, R. J.

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

Danson, C.

M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.

DelRosso, T.

E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
[CrossRef] [PubMed]

Dou, X.

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

Dragila, R.

R. Dragila. B. Luther-Davies, and S.Vukovic, "High Transparency of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Draper, B.

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

Dupuis, M. T.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
[CrossRef] [PubMed]

Feldner, A.

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Fischer, G. L.

R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
[CrossRef] [PubMed]

Friedrich, L.

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Gehr, R. J.

R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
[CrossRef] [PubMed]

Giannattasio, A.

Giorgetti, E.

E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
[CrossRef]

G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
[CrossRef]

Hafner, J. H.

F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
[CrossRef] [PubMed]

Halas, N. J.

S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
[CrossRef]

Hao, F.

F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
[CrossRef] [PubMed]

Hibino, Y.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
[CrossRef]

Hooper, I. R.

A. Giannattasio, I. R. Hooper, and W. L. Sambles, " Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express,  12, 5881-5886 (2004).
[CrossRef] [PubMed]

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-045435 (2004).
[CrossRef]

Jiang, Y.

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

Kahl, M.

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
[CrossRef]

La Rochelle, S.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
[CrossRef]

Lee, T. R.

S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
[CrossRef]

Liu, M.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Mannoni, A.

Margheri, G.

E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
[CrossRef]

G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
[CrossRef]

G. Margheri,A. Mannoni, and F. Quercioli, "High resolution angular and displacement sensing based on the excitation of surface plasma waves," Appl. Opt. 36, 4521-4525 (1997).
[CrossRef] [PubMed]

Markel, V. A.

V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426-085437 (2007).
[CrossRef]

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000).
[CrossRef]

McNeil, J. R.

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000).
[CrossRef]

Mizrahi, V.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
[CrossRef]

Neely, D.

M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.

Nehl, C. L.

F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
[CrossRef] [PubMed]

Nordlander, P.

F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
[CrossRef]

Pliska, T.

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Polyakov, S.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

Poulter, M. J.

M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
[CrossRef]

Quercioli, F.

Rangel-Sojo, R.

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

Reicher, D. W.

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

Reichstein, W.

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Saj, W.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-045435 (2004).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
[CrossRef]

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

Sambles, W. L.

Sarychev, A. K.

V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426-085437 (2007).
[CrossRef]

V. M. Shalaev, and A. K. Sarychev, "Nonlinear optics of random metal-dielectric films," Phys. Rev. B 57, 13265-13288 (1998).
[CrossRef]

Schulz, L. G.

Schwoerer, M.

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, and A. K. Sarychev, "Nonlinear optics of random metal-dielectric films," Phys. Rev. B 57, 13265-13288 (1998).
[CrossRef]

Sipe, J. E.

R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
[CrossRef] [PubMed]

Sottini, S.

E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
[CrossRef]

G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
[CrossRef]

Spruce, G.

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

Stegeman, G.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Stegeman, G. I.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
[CrossRef]

Sun, J.

Sun, Q.

Tangherlini, F. R.

Toci, G.

G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
[CrossRef]

Voges, E.

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

Vogtmann, T.

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
[CrossRef] [PubMed]

Wang, J.

Westcott, S. L.

S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
[CrossRef]

Wherrett, B. S.

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

Yoshino, F.

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

Zaidi, S. H.

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, "Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions," Chem. Phys. Lett. 300, 651-655 (1999).
[CrossRef]

Electron Lett. (1)

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, "All-optical switching of grating transmission using cross-phase modulation in optical fibers," Electron Lett. 26, 1459-1460 (1990).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 42-44 (2000).
[CrossRef]

J. Appl. Phys. (1)

S. H. Zaidi, D. W. Reicher, B. Draper, J. R. McNeil, and S. R. J. Brueck, "Characterization of Thin Al Films using Grating Coupling to Surface Plasma Waves," J. Appl. Phys. 71, 6039-6048 (1992).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. D (1)

R. J. Crook, J. R. Sambles, R. Rangel-Sojo, G. Spruce, and B. S. Wherrett, "The electronic nonlinear optical behaviour of a grating coupled polymer 9BCMU waveguide," J. Phys. D 28, 269-274 (1995).
[CrossRef]

J.Opt.Soc.Am (1)

G. Margheri, E. Giorgetti, S. Sottini, and G. Toci, "Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques," J.Opt.Soc.Am 20, 741-751 (2003).
[CrossRef]

Laser Physics (1)

E. Giorgetti, G. Margheri, T. DelRosso, and S. Sottini, "Periodic Metal-Dielectric Interfaces for Photonic Applications," Laser Physics 18, 1-6 (2008).
[CrossRef]

Nano Lett. (1)

F.  Hao, C. L.  Nehl, J. H.  Hafner, and P.  Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett.  7, 729-732 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Feldner, W. Reichstein, T. Vogtmann, M. Schwoerer, L. Friedrich, T. Pliska, M. Liu, G. Stegeman, and Seung-Han Park, "Linear optical properties of polydiacetylene para-toluene sulfonate thin films," Opt. Commun. 195, 205-209 (2001).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol. 33, 417-420 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

R. J. Gehr, G. L. Fischer, R. W. Boyd, and J. E. Sipe, "Nonlinear optical response of layered composite materials," Phys. Rev. A,  53, 2792-2798 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (5)

V. M. Shalaev, and A. K. Sarychev, "Nonlinear optics of random metal-dielectric films," Phys. Rev. B 57, 13265-13288 (1998).
[CrossRef]

M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000).
[CrossRef]

V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426-085437 (2007).
[CrossRef]

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-045435 (2004).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B,  54, 6227-6244 (1996).
[CrossRef]

Phys. Rev. B. (1)

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, "Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm," Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

R. Dragila. B. Luther-Davies, and S.Vukovic, "High Transparency of Classically Opaque Metallic Films," Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polaritons guided by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802-046804 (2005).
[CrossRef] [PubMed]

Other (2)

M. J. Poulter, D. Neely, J. Collier, and C. Danson, " Transmission grating CPA system design for the Vulcan laser," Central Laser Facility Annual Report, 2000/2001, 157-159.

E. D. Palik, Handbook of Optical Constant of Solid III, (Academic Press,1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The stratification considered in the present work.

Fig. 2.
Fig. 2.

Working scheme of an AOS based on refractive index change: signal from a fiber ended by a GRIN (graded index) rod is transmitted or reflected by the nonlinear structure according to whether the pump, coming transversally through a focusing lens FL, is ON or OFF.

Fig. 3.
Fig. 3.

Reflectivity R and transmittivity T of the AOS with 1 NL layer (4):(a) OFF state, (b) ON state.

Fig. 4.
Fig. 4.

Reflectivity R and transmittivity T of the AOS with 2 NL layers (2, 4): (a) OFF state, (b) ON state.

Fig. 5.
Fig. 5.

Reflectivity R and transmittivity T of the AOS with 1 NL layer (4) with only real NL refractive index,increased of 35 % with respect to the corresponding case with complex nonlinearity: (a) OFF state, (b) ON state.

Fig. 6.
Fig. 6.

Reflectivity R and transmittivity T of the AOS with 2 NL layers (2, 4) with only real NL refractive index,increased of 25 % with respect to the corresponding case with complex nonlinearity: (a) OFF state, (b) ON state.

Fig. 7.
Fig. 7.

Reflectivity R (a) and transmittivity T (b) for three incidence angles when the NL is ON and layers 2 and 4 are activated.

Fig. 8.
Fig. 8.

Signal beam with Gaussian profile TEM00 and waist radius w0 , impinging on the metal film at angle θl .. Due to the change of wavefront profile along z’, wavevector s is tilted by δx with respect to the beam direction., so affecting the performance of AOS device.

Fig. 9.
Fig. 9.

Transmittivity variations ΔT versus Δ|εAu | (a) and Δd (b)

Fig. 10.
Fig. 10.

A possible implementation of the NL AOS. (A=mirrored surface, B=corner cube reflector). The double passage of signal beam into the nonlinear zone ehnances both transmission and reflection device response.

Tables (3)

Tables Icon

Table 1. Response of the AOS to a Gaussian pulse with duration t0. Extinction ratios η are reported at gate 1 (reflection) and gate 2 (transmission) for two different cases: one nonlinear PTS layer on the bottom of the metal film and two nonlinear PTS layers symmetric sandwiching the film.

Tables Icon

Table 2. Response of the AOS based on an ideal nonlinear material to a Gaussian pulse with duration t0.

Tables Icon

Table 3. Variations of the extinction ratios η with respect to Tab.1 for changes in amplitude (ΔA), modulus of dielectric constant of gold (Δ|εAu |) and thickness of gold layer (Δd) for a 2 NL layers system at λ=1502.52 nm. Transmission and reflection cases are considered with different pulse durations t0

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

tanh ( p 3 d ) = Γ 3 ( Γ 4 + Γ 2 ) Γ 3 2 + Γ 4 Γ 2
Γ i = p i ε i i = 1 . . . . . . 5
p i = k SPP i 2 ε i k 0 2
k sin ( θ i ) ± m K = ± k LRSPP m = 1 . . . . . . n
f ( x ) = A sin ( K x )
E ( r , t ) = E 0 e i ( ω t k · r ) e ( t t 0 ) 2
P ( r , ω ) = E ω ( r , ω ) 2
R ( θ ) = P R ( θ ) P inc
P R ( θ ) = 0 P λ ( λ ) c R ( λ , θ ) λ 2 d λ
P inc = 0 P λ ( λ ) c λ 2 d λ
Φ ( x , y , z ) = k z arctg ( z z r ) + k ( x 2 + y 2 ) 2 ρ ( z )
ρ ( z ) = z [ 1 + ( z r z ) 2 ]
Φ ( x , y , z ) = k s

Metrics