Abstract

We demonstrate electrical tuning of phase mismatch in silicon wavelength converters. Active control of birefringence induced by a thinfilm piezoelectric transducer integrated on top of the waveguides is used for dispersion engineering. The technology provides a solution for compensating the phase mismatch caused by fabrication errors in integrated waveguides. It also offers a mean to dynamically control the relative dispersion between interacting waves and hence, to introduce electronic control of optical parametric processes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
    [CrossRef]
  2. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007).
    [CrossRef] [PubMed]
  3. M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
    [CrossRef] [PubMed]
  4. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
    [CrossRef] [PubMed]
  5. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2004).
    [CrossRef] [PubMed]
  6. V. Raghunathan, R. Claps, D. Dimitropoulos, B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. Lightwave Technol. 23, 2094-2102 (2005).
    [CrossRef]
  7. W. N. Ye, D. -X. Xu, S. Janz, P. Cheben, M. -J. Picard, B. Lamontagne, and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightwave Technol. 23, 1308-1317 (2005).
    [CrossRef]
  8. V. Raghunathan and B. Jalali, "Stress-induced phase matching in silicon waveguides," Conference of Lasers and Electro-Optics (CLEO), Long Beach CA (2006) Paper CMK5.
  9. K. K. Tsia, S. Fathpour, and B. Jalali, "Electrical tuning of birefringence in silicon waveguides," Appl. Phys. Lett. 92, 061109 (2008).
    [CrossRef]
  10. N. Setter, Electroceramic-based MEMS: fabrication-technology and applications (Springer, New York 2005).
    [CrossRef]
  11. H. Ishiwara, M. Okuyama, and Y. Arimoto, Ferroelectric random access memories: fundamentals and applications (Springer, New York, 2004).
    [CrossRef]
  12. K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
    [CrossRef] [PubMed]
  13. G. P.  Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007)

2008 (1)

K. K. Tsia, S. Fathpour, and B. Jalali, "Electrical tuning of birefringence in silicon waveguides," Appl. Phys. Lett. 92, 061109 (2008).
[CrossRef]

2007 (3)

2006 (2)

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

Agrawal, G. P.

Cheben, P.

Claps, R.

Dimitropoulos, D.

Fathpour, S.

K. K. Tsia, S. Fathpour, and B. Jalali, "Electrical tuning of birefringence in silicon waveguides," Appl. Phys. Lett. 92, 061109 (2008).
[CrossRef]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

Foster, M. A.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Jalali, B.

Janz, S.

Lamontagne, B.

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Painter, O. J.

Picard, M. -J.

Raghunathan, V.

Salem, R.

Schmidt, B. S.

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Tarr, N. G.

Tsia, K. K.

K. K. Tsia, S. Fathpour, and B. Jalali, "Electrical tuning of birefringence in silicon waveguides," Appl. Phys. Lett. 92, 061109 (2008).
[CrossRef]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006).
[CrossRef] [PubMed]

Turner, A. C.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Xu, D. -X.

Ye, W. N.

Appl. Phys. Lett. (1)

K. K. Tsia, S. Fathpour, and B. Jalali, "Electrical tuning of birefringence in silicon waveguides," Appl. Phys. Lett. 92, 061109 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
[CrossRef]

Nature (1)

M. A.  Foster, A. C.  Turner, J. E.  Sharping, B. S.  Schmidt, M.  Lipson, A. L.  Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature  441, 960-962 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Other (4)

N. Setter, Electroceramic-based MEMS: fabrication-technology and applications (Springer, New York 2005).
[CrossRef]

H. Ishiwara, M. Okuyama, and Y. Arimoto, Ferroelectric random access memories: fundamentals and applications (Springer, New York, 2004).
[CrossRef]

G. P.  Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007)

V. Raghunathan and B. Jalali, "Stress-induced phase matching in silicon waveguides," Conference of Lasers and Electro-Optics (CLEO), Long Beach CA (2006) Paper CMK5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron microscope image of the SOI waveguide with the PZT capacitor on top of it. (b) The enlarged cross-section of the PZT capacitor. The waveguide has a width of 1.5 µm, rib height of 2 µm and slab height 1.1 µm. The oxide-cladding is 500 nm thick. The PZT thickness is 500 nm. Both top and bottom Pt/Ti electrodes are 100nm/10nm thick.

Fig. 2
Fig. 2

Phase mismatch (left axis) and the corresponding birefringence (right axis) of the SOI waveguide due to piezoelectric effect from PZT as a function of DC voltages.

Fig. 3
Fig. 3

Anti-Stokes spectra (TM polarized) of wavelength conversion based upon coherent anti-Stokes Raman scattering at voltage biases of 0V (red) and 5V (blue) applied to the PZT capacitor. Two input conditions are studied: (a) TE-polarized pump and TM-polarized Stokes. (b) TE-polarized pump and TE-polarized Stokes. The coupled input pump power is ~1.2 W.

Fig. 4
Fig. 4

(a) Measured CARS wavelength conversion efficiency versus PZT voltages at coupled pump power of ~1.2 W. (b) Calculated dependence of CARS conversion efficiency on phase mismatch (red curve). The measured data (blue square dots) is fit with the model.

Fig. 5
Fig. 5

CARS wavelength conversion versus coupled pump power for air-clad SOI waveguide (grey triangles), the waveguide with PZT capacitor cladding without voltage bias (blue squares) and at a bias of 5 V (red circles). The theoretical model agrees well with the case of 0 V (blue line: Δk=12 cm-1) and 5 V (red line: Δk=10.5 cm-1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k A j = 2 k P i k S j ,
Δ k B = 2 π λ p ( n TE n TM ) = 2 π λ p ( Δ n B 0 + Δ n piezo ) = Δ k B 0 + Δ k piezo ,

Metrics