Abstract

We introduce a new microscopy technique termed total internal reflection holographic microscopy (TIRHM). Quantitative phase microscopy by digital holography is used to image the phase profile of light in total internal reflection, which is modulated by the materials present on or near the surface of internal reflection. The imaging characteristics are theoretically modeled and imaging capabilities are experimentally demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jueptner and U. Schnars, Digital Holography, (Springer Verlag, 2004).
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (New York, McGraw-Hill, 1996).
  3. U. Schnars and W. P. Jueptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-81 (1994).
    [CrossRef] [PubMed]
  4. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
    [CrossRef] [PubMed]
  5. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268 (1997).
    [CrossRef] [PubMed]
  6. T.-C. Poon, "Three-dimensional image processing and optical scanning holography," Adv. Imaging Electron Phys. 126, 329-350 (2003).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291 (1999).
    [CrossRef]
  8. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis," Opt. Express 14, 5895-5908 (2006).
    [CrossRef] [PubMed]
  9. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging," Appl. Opt. 42, 1938-46 (2003).
    [CrossRef] [PubMed]
  10. M. L. Xu, X. Peng, J. Miao, and A. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  11. G. Pedrini and H. J. Tiziani, "Quantitative evaluation of two-dimensional dynamic deformations using digital holography," Opt. Laser Technol. 29, 249-256 (1997).
    [CrossRef]
  12. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-05 (2001).
    [CrossRef] [PubMed]
  13. K. J. Chalut, W. J. Brown, and A. Wax, "Quantitative phase microscopy with asynchronous digital holography," Opt. Express 15, 3047-3052 (2007).
    [CrossRef] [PubMed]
  14. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, "Parameter-optimized digital holographic microscope for high-resolution living-cell analysis," Appl. Opt. 43, 6536-6544 (2004).
    [CrossRef]
  15. K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007).
    [CrossRef] [PubMed]
  16. M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-10 (2000).
    [CrossRef] [PubMed]
  17. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]
  18. J. Gass, A. Dakoff and M. K. Kim, "Phase imaging without 2-pi ambiguity by multiwavelength digital holography," Opt. Lett. 28, 1141-3 (2003).
    [CrossRef] [PubMed]
  19. C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  20. C. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online,  5, 21 (2006).
    [CrossRef] [PubMed]
  21. D. Axelrod, "Cell-substrate contacts illuminated by total internal reflection fluorescence," J Cell Biol. 89, 141-145 (1981).
    [CrossRef] [PubMed]
  22. D. Axelrod, N. L. Thompson, and T. P. Burghardt, "Total internal reflection fluorescent microscopy," J Microsc 129, 19-28 (1983).
    [CrossRef] [PubMed]
  23. A. S. G. Curtis, "The mechanism of adhesion of cells to glass - a study by interference reflection microscopy," J Cell Biol. 20, 199-215 (1964).
    [CrossRef] [PubMed]
  24. H. Verschueren, "Interference reflection microscopy in cell biology: methodology and applications," J Cell Sci. 75, 279-301 (1985).
    [PubMed]
  25. W. M. AshIII and M. K. Kim, "A demonstration of total internal reflection holographic microscopy for the study of cellular motion," in Digital Holography and Three-Dimensional Imaging, Opt. Soc. Am. Topical Meeting (St. Petersburg, FL, March 2008) Technical Digest.
  26. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, "Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes," Opt. Express 13, 9935-9940 (2005).
    [CrossRef] [PubMed]

2007

2006

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis," Opt. Express 14, 5895-5908 (2006).
[CrossRef] [PubMed]

C. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online,  5, 21 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2001

2000

1999

1997

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268 (1997).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, "Quantitative evaluation of two-dimensional dynamic deformations using digital holography," Opt. Laser Technol. 29, 249-256 (1997).
[CrossRef]

1994

1985

H. Verschueren, "Interference reflection microscopy in cell biology: methodology and applications," J Cell Sci. 75, 279-301 (1985).
[PubMed]

1983

D. Axelrod, N. L. Thompson, and T. P. Burghardt, "Total internal reflection fluorescent microscopy," J Microsc 129, 19-28 (1983).
[CrossRef] [PubMed]

1981

D. Axelrod, "Cell-substrate contacts illuminated by total internal reflection fluorescence," J Cell Biol. 89, 141-145 (1981).
[CrossRef] [PubMed]

1964

A. S. G. Curtis, "The mechanism of adhesion of cells to glass - a study by interference reflection microscopy," J Cell Biol. 20, 199-215 (1964).
[CrossRef] [PubMed]

Alfieri, D.

Asundi, A.

Axelrod, D.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, "Total internal reflection fluorescent microscopy," J Microsc 129, 19-28 (1983).
[CrossRef] [PubMed]

D. Axelrod, "Cell-substrate contacts illuminated by total internal reflection fluorescence," J Cell Biol. 89, 141-145 (1981).
[CrossRef] [PubMed]

Bevilacqua, F.

Brown, W. J.

Burghardt, T. P.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, "Total internal reflection fluorescent microscopy," J Microsc 129, 19-28 (1983).
[CrossRef] [PubMed]

Callens, N.

Carl, D.

Chalut, K. J.

Coppola, G.

Cuche, E.

Curtis, A. S. G.

A. S. G. Curtis, "The mechanism of adhesion of cells to glass - a study by interference reflection microscopy," J Cell Biol. 20, 199-215 (1964).
[CrossRef] [PubMed]

Dakoff, A.

De Nicola, S.

Depeursinge, C.

Dubois, F.

Ferraro, P.

Finizio, A.

Gass, J.

Grilli, S.

Jeong, K.

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-05 (2001).
[CrossRef] [PubMed]

Jueptner, W. P.

Kemper, B.

Kim, M. K.

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-05 (2001).
[CrossRef] [PubMed]

Lo, C. M.

Magro, C.

Mann, C.

C. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online,  5, 21 (2006).
[CrossRef] [PubMed]

Mann, C. J.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-05 (2001).
[CrossRef] [PubMed]

Meucci, R.

Miao, J.

Nolte, D. D.

Pedrini, G.

G. Pedrini and H. J. Tiziani, "Quantitative evaluation of two-dimensional dynamic deformations using digital holography," Opt. Laser Technol. 29, 249-256 (1997).
[CrossRef]

Peng, X.

Pierattini, G.

Poon, T.-C.

T.-C. Poon, "Three-dimensional image processing and optical scanning holography," Adv. Imaging Electron Phys. 126, 329-350 (2003).
[CrossRef]

Schnars, U.

Schockaert, C.

Thompson, N. L.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, "Total internal reflection fluorescent microscopy," J Microsc 129, 19-28 (1983).
[CrossRef] [PubMed]

Tiziani, H. J.

G. Pedrini and H. J. Tiziani, "Quantitative evaluation of two-dimensional dynamic deformations using digital holography," Opt. Laser Technol. 29, 249-256 (1997).
[CrossRef]

Turek, J. J.

Verschueren, H.

H. Verschueren, "Interference reflection microscopy in cell biology: methodology and applications," J Cell Sci. 75, 279-301 (1985).
[PubMed]

von Bally, G.

Wax, A.

Wernicke, G.

Xu, M. L.

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-05 (2001).
[CrossRef] [PubMed]

Yamaguchi, I.

Yourassowsky, C.

Yu, L.

Zhang, T.

Adv. Imaging Electron Phys.

T.-C. Poon, "Three-dimensional image processing and optical scanning holography," Adv. Imaging Electron Phys. 126, 329-350 (2003).
[CrossRef]

Appl. Opt.

Biomed. Eng. Online

C. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online,  5, 21 (2006).
[CrossRef] [PubMed]

J Cell Biol

D. Axelrod, "Cell-substrate contacts illuminated by total internal reflection fluorescence," J Cell Biol. 89, 141-145 (1981).
[CrossRef] [PubMed]

J Cell Biol.

A. S. G. Curtis, "The mechanism of adhesion of cells to glass - a study by interference reflection microscopy," J Cell Biol. 20, 199-215 (1964).
[CrossRef] [PubMed]

J Cell Sci.

H. Verschueren, "Interference reflection microscopy in cell biology: methodology and applications," J Cell Sci. 75, 279-301 (1985).
[PubMed]

J Microsc

D. Axelrod, N. L. Thompson, and T. P. Burghardt, "Total internal reflection fluorescent microscopy," J Microsc 129, 19-28 (1983).
[CrossRef] [PubMed]

Opt. Express

Opt. Laser Technol.

G. Pedrini and H. J. Tiziani, "Quantitative evaluation of two-dimensional dynamic deformations using digital holography," Opt. Laser Technol. 29, 249-256 (1997).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci. USA

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-05 (2001).
[CrossRef] [PubMed]

Other

W. Jueptner and U. Schnars, Digital Holography, (Springer Verlag, 2004).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (New York, McGraw-Hill, 1996).

W. M. AshIII and M. K. Kim, "A demonstration of total internal reflection holographic microscopy for the study of cellular motion," in Digital Holography and Three-Dimensional Imaging, Opt. Soc. Am. Topical Meeting (St. Petersburg, FL, March 2008) Technical Digest.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Reflectance R and (b) reflection phase, phi (φ in text) vs. angle of incidence, theta1 (θ 1 in text) for the relative index, n 1/n 2=1.517. [red: s-polarization; blue: p-polarization] (c) Reflection phase of s-polarization vs. angle of incidence for various relative indices: n 1=1.517; n 2=1.000 (red), 1.333 (blue), 1.382 (green), 1.432 (purple), 1.458 (black).

Fig. 2.
Fig. 2.

Geometry of frustrated TIR (fTIR).

Fig. 3.
Fig. 3.

Reflectance and reflection phase in fTIR, for s-polarization with n1 =1.517, n2 =1.000, and n3 =1.458. a) Reflectance R vs. the angle of incidence, theta1 (θ1 in text) and the n2 -layer thickness z 0. b) Reflection phase, phi (φ in text) vs. theta1 (θ1 in text) and z 0. c) Expanded view of the dotted-box area of b). d) Cross-sections of a) at theta1=30° (red), 40° (blue), 60° (green), and 75° (purple). e) Cross-sections of b) at several values of theta1 (θ1 in text) as in d). f) Expanded view of the dotted-box area of e).

Fig. 4.
Fig. 4.

Apparatus for digital holography of total internal reflection. BS: beam-splitters; M: mirrors; L: lenses; A: object plane; H: hologram plane.

Fig. 5.
Fig. 5.

(a). General configuration of water droplets placed on prism. b) Amplitude and c) phase images of light reflected from the prism detailing cross-section cut line. Field of view is approximately 300×900 µm 2 with 256×256 pixels. Gray scale for b) is 0 ~1 in arbitrary unit, while for c) it is -80°~+180°. d) Graph of cross-section along a vertical line through a water drop in c). e) A similar graph for a droplet of 50/50 mixture of water and ethylene glycol.

Fig. 6.
Fig. 6.

(a). General configuration of quartz lens placed on prism. b) Amplitude and c) phase images of light reflected from the prism. d) Pseudo-color perspective rendering of c). Field of view is approximately 260×780 µm 2 with 256×256 pixels. Gray scale for b) is 0 ~1 in arbitrary units, while for c) it is -180°~+180°.

Fig. 7.
Fig. 7.

Cross-section of phase profile across the contact spot of quartz lens on glass prism, when the gap is filled with a) air, b) 50/50 mixture of water and ethylene glycol, and c) pure ethylene glycol. Panels d), e), and f) are the corresponding theoretical graphs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r = n 1 cos θ 1 n 2 cos θ 2 n 1 cos θ 1 + n 2 cos θ 2 ; r = n 2 cos θ 1 n 1 cos θ 2 n 2 cos θ 1 + n 1 cos θ 2
h 2 = n 2 cos θ 2 = i n 1 2 sin 2 θ 1 n 2 2 = i η 2 ,
r = exp ( 2 i φ ) ; φ = tan 1 η 2 n 1 cos θ 1 = tan 1 n 1 2 sin 2 θ 1 n 2 2 n 1 cos θ 1
r = exp ( 2 i φ ) ; φ = tan 1 n 1 η 2 n 2 2 cos θ 1 = tan 1 n 1 n 1 2 sin 2 θ 1 n 2 2 n 2 2 cos θ 1
r = ( E 1 E 1 ) = ( h 1 h 2 ) ( h 2 + h 3 ) + ( h 1 + h 2 ) ( h 2 h 3 ) exp ( 2 i φ 0 h 2 ) ( h 1 + h 2 ) ( h 2 + h 3 ) + ( h 1 h 2 ) ( h 2 h 3 ) exp ( 2 i φ 0 h 2 ) ,
r = ( E 1 E 1 ) = ( h 1 i η 2 ) ( i η 2 + h 3 ) + ( h 1 + i η 2 ) ( i η 2 h 3 ) exp ( 2 φ 0 η 2 ) ( h 1 + i η 2 ) ( i η 2 + h 3 ) + ( h 1 i η 2 ) ( i η 2 h 3 ) exp ( 2 φ 0 η 2 ) .
r = ( E 1 E 1 ) = ( h 1 i η 2 ) ( η 2 + η 3 ) + ( h 1 + i η 2 ) ( η 2 η 3 ) exp ( 2 φ 0 η 2 ) ( h 1 + i η 2 ) ( η 2 + η 3 ) + ( h 1 i η 2 ) ( η 2 η 3 ) exp ( 2 φ 0 η 2 ) .

Metrics