Abstract

Three dimensional light confinement and distinct pillar microcavity modes in the ultraviolet have been observed in pillar resonators with embedded colloidal ZnO quantum dots fabricated by focused ion beam milling. Results from a waveguide model for the mode patterns and their spectral positions are in excellent agreement with the experimental data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, C. Santori, G. Solomon, J. Vuckovic, D. Fattal, E. Waks, and E. Diamanti, "Single photons for quantum information systems," Prog. in Inf. 1, 5-37 (2005).
    [CrossRef]
  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
    [CrossRef] [PubMed]
  3. E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
    [CrossRef]
  4. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  5. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
    [CrossRef] [PubMed]
  6. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
    [CrossRef]
  7. A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
    [CrossRef]
  8. K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
    [CrossRef]
  9. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
    [CrossRef] [PubMed]
  10. X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
    [CrossRef]
  11. M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
    [CrossRef] [PubMed]
  12. S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
    [CrossRef]
  13. W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
    [CrossRef] [PubMed]
  14. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
    [CrossRef] [PubMed]
  15. N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals," J. Phys. Chem. B 109, 20810 (2005).
    [CrossRef]
  16. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
    [CrossRef]

2008

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

2007

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

2006

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

2005

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals," J. Phys. Chem. B 109, 20810 (2005).
[CrossRef]

2004

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

2003

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

2002

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

2001

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

2000

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

Abran, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

Arakawa, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

Artemyev, M.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Awschalom, D. D.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Bae, S.-Y.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Beha, K.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Brokmann, X.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

Chang, H.-S.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chang, W.-H.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chapline, G.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Chen, W.-Y.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chyi, J.-I.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Dahan, M.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

Fedutik, Y.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Gamelin, D. R.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals," J. Phys. Chem. B 109, 20810 (2005).
[CrossRef]

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

Gérard, J. M.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

Ghosh, S.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Giacobino, E.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

Götzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

Gutowski, J.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Hagner, M.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Hermier, J. P.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

Hommel, D.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Hoshino, K.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

Hsieh, T.-P.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hsu, T.-M.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Humphreys, C. J.

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

Imamoglu, A.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Jahnke, F.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Jarjour, A. F.

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Kako, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

Kappers, M. J.

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Kittilstved, K. R.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

Kohnle, V.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Kruse, S.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Lau, W. H.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Liu, W. K.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

Lohmeyer, H.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Manin, L.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Moreau, E.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

Nann, T.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Nguyen, Q. P.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

Norberg, N. S.

N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals," J. Phys. Chem. B 109, 20810 (2005).
[CrossRef]

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

Oliver, R. A.

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

Parker, J. M.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Pérez-Willard, F.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Robert, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

Robinson, B. H.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Schwartz, D. A.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

Sebald, K.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Sih, V.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Smith, A. L.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

Solomon, G. S.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

Tahraoui, A.

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

Taylor, R. A.

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

Thierry-Mieg, V.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

Thomay, T.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Vaidya, S.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Vuckovic, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Wang, S.

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

Whitaker, K.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

Wiersig, J.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Woggon, U.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Yamaguchi, T.

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Yamamoto, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Ziegler, M.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Appl. Phys. Lett.

E. Moreau, I. Robert, J. M. Gérard, I. Abran, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

A. F. Jarjour, R. A. Taylor, R. A. Oliver, M. J. Kappers, C. J. Humphreys, and A. Tahraoui, "Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot," Appl. Phys. Lett. 91, 052101 (2007).
[CrossRef]

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, and G. Chapline, "Room-temperature spin coherence in ZnO," Appl. Phys. Lett.,  86, 232507 (2005).
[CrossRef]

J. Am. Chem. Soc.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals," J. Am. Chem. Soc. 125, 13205-13218 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B

N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals," J. Phys. Chem. B 109, 20810 (2005).
[CrossRef]

Nano Lett.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, M. Ziegler, T. Nann, Y. Fedutik,U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, "Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities," Nano Lett. 7, 2897-2900 (2007).
[CrossRef] [PubMed]

Nature

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature,  406, 968 (2000).
[CrossRef] [PubMed]

Nature Mat.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200 K," Nature Mat. 5, 887 (2007).
[CrossRef]

Nature Photon.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Phys. Rev. Lett.

W. K. Liu, K. Whitaker, A. L. Smith, K. R. Kittilstved, B. H. Robinson, and D. R. Gamelin, "Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots," Phys. Rev. Lett. 98, 186804 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi B

K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, S. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, "On the way to InGaN quantum dots embedded into monolithic nitride cavities," Phys. Status Solidi B 244, 1806 (2007).
[CrossRef]

Science

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282 (2000).
[CrossRef] [PubMed]

Other

Y. Yamamoto, C. Santori, G. Solomon, J. Vuckovic, D. Fattal, E. Waks, and E. Diamanti, "Single photons for quantum information systems," Prog. in Inf. 1, 5-37 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

SEM image of two ultraviolet micropillars with diameters of 3.2 µm and 600 nm, respectively, fabricated by focused ion beam milling and containing embedded colloidal ZnO quantum dots. Inset: Cross-sectional SEM image of the planar microcavity.

Fig. 2.
Fig. 2.

(a) Simulated mode patterns of a 3.2 µm diameter ultraviolet pillar microcavity. (b) Top: Spatio-spectrally resolved photoluminescence from colloidal ZnO quantum dots in a 3.2 µm diameter micropillar resonator. Vertical red lines indicate calculated cavity mode positions. (c) Spatio-spectrally resolved white light transmission through the same micropillar. (d) Ensemble photoluminescence of the colloidal ZnO quantum dots measured outside the microcavity.

Metrics