Abstract

On the substrate carrying a sub-wavelength grating covered with a thin metal layer, a fluorescent dye-labeled cell was observed by fluorescence microscope. The fluorescence intensity was more than 20 times greater than that on an optically flat glass substrate. Such a great fluorescence enhancement from labeled cells bound to the grating substrate was due to the excitation by grating coupled surface plasmon resonance. The application of a grating substrate to two-dimensional detection and fluorescence microscopy appears to offer a promising method of taking highly sensitive fluorescence images.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether: Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Heidelberg 1988).
  2. A. Otto, B. O. Seraphin, ed., Optical properties of solids, new development (North-Holland Publishing Company 1976), p. 677.
  3. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
    [CrossRef]
  4. Z. Z. Wang, T. Wilkop, and Q. Cheng, "Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein," Langmuir 21, 10292-10296 (2005).
    [CrossRef] [PubMed]
  5. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
    [CrossRef]
  6. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 177, 115-130 (2000).
    [CrossRef]
  7. K. Tawa and W. Knoll, "Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy" Nucleic Acids Research 32, 2372-2377 (2004).
    [CrossRef] [PubMed]
  8. K. Tawa and K. Morigaki, "Substrate supported phospholipid membranes studied by SPR and surface plasmon fluorescence spectroscopy (SPFS)," Biophys. J. 89, 2750-2758 (2005).
    [CrossRef]
  9. N. P. Prasad, In nanophotonics (John Wiley & Sons, New York 2004), p.129.
    [CrossRef]
  10. S. Link and M. A. El-sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
    [CrossRef]
  11. H. J. Lee, A. W. Wark, and R. M. Corn, "Creating advanced multifunctional biosensors with surface enzymatic transformations," Langmuir 22, 5241-5250 (2006).
    [CrossRef] [PubMed]
  12. E. Popov, L. Tsonev, and D. Maystre, "Lamellar metallic grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
    [CrossRef] [PubMed]
  13. E. Popov, N. Bonod, and S. Enoch, "Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings," Opt. Express 15, 4224-4237 (2007).
    [CrossRef] [PubMed]
  14. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004).
    [CrossRef] [PubMed]
  15. N. -F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W Lin "Enhancement and tunability of active plasmonic by multilayer grating coupled emission," Opt. Express 15, 11608-11615 (2007).
    [CrossRef] [PubMed]
  16. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006).
    [CrossRef] [PubMed]
  17. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, "Antireflection microstructures fabricated upon fluorine-doped SiO2 films," Opt. Lett. 26, 1642-1644 (2001).
    [CrossRef]

2007

2006

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006).
[CrossRef] [PubMed]

H. J. Lee, A. W. Wark, and R. M. Corn, "Creating advanced multifunctional biosensors with surface enzymatic transformations," Langmuir 22, 5241-5250 (2006).
[CrossRef] [PubMed]

2005

K. Tawa and K. Morigaki, "Substrate supported phospholipid membranes studied by SPR and surface plasmon fluorescence spectroscopy (SPFS)," Biophys. J. 89, 2750-2758 (2005).
[CrossRef]

Z. Z. Wang, T. Wilkop, and Q. Cheng, "Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein," Langmuir 21, 10292-10296 (2005).
[CrossRef] [PubMed]

2004

S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004).
[CrossRef] [PubMed]

K. Tawa and W. Knoll, "Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy" Nucleic Acids Research 32, 2372-2377 (2004).
[CrossRef] [PubMed]

2001

2000

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 177, 115-130 (2000).
[CrossRef]

1999

S. Link and M. A. El-sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

1998

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

1997

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
[CrossRef]

1994

Barnes, W. L.

Bonod, N.

Cheng, Q.

Z. Z. Wang, T. Wilkop, and Q. Cheng, "Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein," Langmuir 21, 10292-10296 (2005).
[CrossRef] [PubMed]

Chiu, N. -F.

Corn, R. M.

H. J. Lee, A. W. Wark, and R. M. Corn, "Creating advanced multifunctional biosensors with surface enzymatic transformations," Langmuir 22, 5241-5250 (2006).
[CrossRef] [PubMed]

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
[CrossRef]

Davis, C. C.

El-sayed, M. A.

S. Link and M. A. El-sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Enoch, S.

Frutos, A. G.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
[CrossRef]

Hung, Y.-J.

Jordan, C. E.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
[CrossRef]

Kikuta, H.

Kintaka, K.

Knoll, W.

K. Tawa and W. Knoll, "Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy" Nucleic Acids Research 32, 2372-2377 (2004).
[CrossRef] [PubMed]

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 177, 115-130 (2000).
[CrossRef]

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

Kuan, C.-H.

Lee, C.-K.

Lee, H. J.

H. J. Lee, A. W. Wark, and R. M. Corn, "Creating advanced multifunctional biosensors with surface enzymatic transformations," Langmuir 22, 5241-5250 (2006).
[CrossRef] [PubMed]

Lee, J.-H.

Liebermann, T.

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 177, 115-130 (2000).
[CrossRef]

Lin, C.-W

Link, S.

S. Link and M. A. El-sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Maystre, D.

Mizutani, A.

Morigaki, K.

K. Tawa and K. Morigaki, "Substrate supported phospholipid membranes studied by SPR and surface plasmon fluorescence spectroscopy (SPFS)," Biophys. J. 89, 2750-2758 (2005).
[CrossRef]

Nakano, H.

Nien, S.-Y.

Nishii, J.

Popov, E.

Smolyaninov, I. I.

Tawa, K.

K. Tawa and K. Morigaki, "Substrate supported phospholipid membranes studied by SPR and surface plasmon fluorescence spectroscopy (SPFS)," Biophys. J. 89, 2750-2758 (2005).
[CrossRef]

K. Tawa and W. Knoll, "Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy" Nucleic Acids Research 32, 2372-2377 (2004).
[CrossRef] [PubMed]

Thiel, A. J.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
[CrossRef]

Tsonev, L.

Wang, Z. Z.

Z. Z. Wang, T. Wilkop, and Q. Cheng, "Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein," Langmuir 21, 10292-10296 (2005).
[CrossRef] [PubMed]

Wark, A. W.

H. J. Lee, A. W. Wark, and R. M. Corn, "Creating advanced multifunctional biosensors with surface enzymatic transformations," Langmuir 22, 5241-5250 (2006).
[CrossRef] [PubMed]

Wedge, S.

Wilkop, T.

Z. Z. Wang, T. Wilkop, and Q. Cheng, "Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein," Langmuir 21, 10292-10296 (2005).
[CrossRef] [PubMed]

Wu, H.-C.

Wu, K.-C.

Yu, C.

Anal. Chem.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, "Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces," Anal. Chem. 69, 4939-4947 (1997).
[CrossRef]

Annu. Rev. Phys. Chem.

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

Appl. Opt.

Biophys. J.

K. Tawa and K. Morigaki, "Substrate supported phospholipid membranes studied by SPR and surface plasmon fluorescence spectroscopy (SPFS)," Biophys. J. 89, 2750-2758 (2005).
[CrossRef]

Colloids Surf. A

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 177, 115-130 (2000).
[CrossRef]

J. Phys. Chem. B

S. Link and M. A. El-sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Langmuir

H. J. Lee, A. W. Wark, and R. M. Corn, "Creating advanced multifunctional biosensors with surface enzymatic transformations," Langmuir 22, 5241-5250 (2006).
[CrossRef] [PubMed]

Z. Z. Wang, T. Wilkop, and Q. Cheng, "Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein," Langmuir 21, 10292-10296 (2005).
[CrossRef] [PubMed]

Nucleic Acids Research

K. Tawa and W. Knoll, "Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy" Nucleic Acids Research 32, 2372-2377 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

N. P. Prasad, In nanophotonics (John Wiley & Sons, New York 2004), p.129.
[CrossRef]

H. Raether: Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Heidelberg 1988).

A. Otto, B. O. Seraphin, ed., Optical properties of solids, new development (North-Holland Publishing Company 1976), p. 677.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Scanning probe microscope image of grating fabricated on SiO2 surface with 480-nm pitch and 31-nm depth.

Fig. 2.
Fig. 2.

Structure of grating substrate after coating

Fig. 3.
Fig. 3.

SPR-SPFS setup

Fig. 4.
Fig. 4.

Optical arrangement of grating and incident light. When the grating vector is parallel to a plane including propagating p-polarized light, ψ is defined as 0 degrees.

Fig. 5.
Fig. 5.

Schematic of a fluorescence microscope set-up

Fig. 6.
Fig. 6.

Zero-order reflection spectra of Cy5-treptavidin bound to substrates in phosphate buffer: Substrates with grating of ψ=0 degrees (solid line), grating of ψ=45 degrees (dotted line), grating of ψ=90 degrees (broken line), slide glass covered (circles), and uncoated slide glass (triangles).

Fig. 7.
Fig. 7.

SPFS spectra for Cy5-streptavidin bound to substrates in phosphate buffer; symbols as in Figure 5.

Fig. 8.
Fig. 8.

Fluorescence microscope images of labeled cells on substrate: (a) lateral grating plate, (b) longitudinal grating plate, (c) plate with coating, and (d) uncoated slide glass. Bar corresponds to 10 µm.

Fig. 9.
Fig. 9.

Results of RCWA calculation (solid lines) and measurement (broken lines) of reflectivity on grating of ψ=0 (with circles) and 45 degrees (with triangles). Interface was air.

Fig. 10.
Fig. 10.

Cross section of fluorescence images corresponding to Figure 8(a) (solid line) and (c) (dotted line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k SPP = k 0 ( ε d ε m ( ε d + ε m ) ) 1 2 = k 0 sin θ ± m k g ( m = ± 1 , 2 , 3 . . . ) ,
E f = 2 ε m 2 cos θ ( 1 R ) ( ε m ( ε m 1 ) 1 2 ) ,

Metrics