Abstract

We demonstrate a bright, narrowband, compact, quasi-phasematched single-crystal source generating path-polarization-entangled photon pairs at 810 nm and 1550 nm at a maximum rate of 3×106 s-1 THz-1 mW-1 after coupling to single-mode fiber, and with two-photon interference visibility above 90%. While the source can already be used to implement quantum communication protocols such as quantum key distribution, this work is also instrumental for narrowband applications such as entanglement transfer from photonic to atomic qubits, or entanglement of photons from independent sources.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
    [Crossref]
  2. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
    [Crossref]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).
  4. D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  5. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
    [Crossref]
  6. D. Deutsch and E. Ekert, “Quantum computation,” Phys. World 11, 47 (1998).
  7. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  8. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
    [Crossref] [PubMed]
  9. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306, 1330–1336 (2004).
    [Crossref] [PubMed]
  10. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  11. Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
    [Crossref]
  12. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [Crossref] [PubMed]
  13. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
    [Crossref] [PubMed]
  14. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
    [Crossref] [PubMed]
  15. W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, “Bloch theory of entangled photon generation in nonlinear photonic crystals,” Phys. Rev. A 72, 043815 (2005).
    [Crossref]
  16. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
    [Crossref]
  17. F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
    [Crossref]
  18. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express 15, 6926–6933 (2007).
    [Crossref] [PubMed]
  19. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001)
    [Crossref]
  20. S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
    [Crossref]
  21. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
    [Crossref]
  22. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [Crossref]
  23. F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Physics,  16, 1517–1524, (2006).
    [Crossref]
  24. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [Crossref] [PubMed]
  25. G. B. Xavier, G. Vilela de Faria, G. P. Temporão, and J. P. von der Weid, “Full polarization control for fiber optical quantum communication systems using polarization encoding,” Opt. Express 16, 1867–1873 (2008).
    [Crossref] [PubMed]
  26. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
    [Crossref] [PubMed]
  27. M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
    [Crossref]
  28. A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
    [Crossref]

2008 (2)

G. B. Xavier, G. Vilela de Faria, G. P. Temporão, and J. P. von der Weid, “Full polarization control for fiber optical quantum communication systems using polarization encoding,” Opt. Express 16, 1867–1873 (2008).
[Crossref] [PubMed]

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

2007 (3)

2006 (4)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Physics,  16, 1517–1524, (2006).
[Crossref]

2005 (5)

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, “Bloch theory of entangled photon generation in nonlinear photonic crystals,” Phys. Rev. A 72, 043815 (2005).
[Crossref]

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

2004 (3)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

2001 (4)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001)
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
[Crossref] [PubMed]

1998 (3)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

D. Deutsch and E. Ekert, “Quantum computation,” Phys. World 11, 47 (1998).

1997 (1)

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

1982 (1)

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[Crossref]

1981 (1)

A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
[Crossref]

Albert-Seifried, S.

Albota, M. A.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[Crossref]

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Baldi, P.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

Banaszek, K.

Berger, V.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Beveratos, A.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Boschi, D.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

Bouwmeester, D.

W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, “Bloch theory of entangled photon generation in nonlinear photonic crystals,” Phys. Rev. A 72, 043815 (2005).
[Crossref]

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Branca, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

Chen, Jun

Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
[Crossref] [PubMed]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

de Dood, M. J. A.

W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, “Bloch theory of entangled photon generation in nonlinear photonic crystals,” Phys. Rev. A 72, 043815 (2005).
[Crossref]

de Faria, G. Vilela

De Martini, F.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

Deutsch, D.

D. Deutsch and E. Ekert, “Quantum computation,” Phys. World 11, 47 (1998).

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
[Crossref] [PubMed]

Ducci, S.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Duligall, J.

Eibl, M.

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Ekert, E.

D. Deutsch and E. Ekert, “Quantum computation,” Phys. World 11, 47 (1998).

Fedrizzi, A.

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

Fulconis, J.

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Gisin, N.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[Crossref]

Halder, M.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Hardy, L.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

Herbst, T.

Irvine, W. T. M.

W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, “Bloch theory of entangled photon generation in nonlinear photonic crystals,” Phys. Rev. A 72, 043815 (2005).
[Crossref]

Jennewein, T.

Jorel, C.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Karlsson, A.

Kim, T.

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Physics,  16, 1517–1524, (2006).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Konig, F.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Kuklewicz, C. E.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Kumar, Prem

Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Lee, Kim Fook

Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
[Crossref]

Leo, G.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Li, Xiaoying

Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
[Crossref]

Likforman, J.-P.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Ljunggren, D.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
[Crossref] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Mason, E. J.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Mattle, K.

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Messin, G.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

Pan, J-W

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Popescu, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

Poppe, A.

Rarity, J.

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[Crossref]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

Russell, P.

Sauge, S.

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

Shapiro, J. H.

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Physics,  16, 1517–1524, (2006).
[Crossref]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Shi, B. S.

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[Crossref]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Swillo, M.

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

Temporão, G. P.

Tengner, M.

Thew, R.T.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Tittel, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

Tomita, A.

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[Crossref]

U’Ren, A. B.

van Houwelingen, J.A.W.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

Vedral1, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

von der Weid, J. P.

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Voss, Paul L

Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
[Crossref]

Wadsworth, W.

Waldebäck, J.

Walmsley, I. A.

Walther, P.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

Weinfurter, H.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Physics,  16, 1517–1524, (2006).
[Crossref]

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

Xavier, G. B.

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Zbinden, H.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

Zeilinger, A.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref] [PubMed]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
[Crossref] [PubMed]

Am. J. Phys. (1)

A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 28, (2001).
[Crossref]

Laser Physics (1)

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Physics,  16, 1517–1524, (2006).
[Crossref]

Nature (5)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413 (2001).
[Crossref] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

D. Bouwmeester, J-W Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).
[Crossref] [PubMed]

New J. Phys. (2)

Jun Chen, Kim Fook Lee, Xiaoying Li, Paul L Voss, and Prem Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9289 (2007).
[Crossref]

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (5)

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

W. T. M. Irvine, M. J. A. de Dood, and D. Bouwmeester, “Bloch theory of entangled photon generation in nonlinear photonic crystals,” Phys. Rev. A 72, 043815 (2005).
[Crossref]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004).
[Crossref]

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, “Efficient spectrally bright source of polarization entangled photons,” Phys. Rev. A 71, 033805 (2005).
[Crossref]

Phys. Rev. Lett. (5)

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.,  97, 173901 (2006).
[Crossref] [PubMed]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80,1121–1125 (1998).
[Crossref]

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Phys. World (1)

D. Deutsch and E. Ekert, “Quantum computation,” Phys. World 11, 47 (1998).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

Science (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Single crystal source of entangled photons at 810 and 1550 nm.

Fig. 2.
Fig. 2.

(Colors online). Principle of active stabilization of the single-crystal source. The output phase factor φ=ks (-ΔLi+ΔLs) can be set by locking the path mismatch (-ΔLi+ΔLs) of the Mach-Zehnder interferometer (MZI) traveled by pump light between the polarizing beam splitter where it is split until the non polarizing beam splitter after which pump interferences can be monitored with photodiodes Det 1 and Det 2. For a preliminary alignment of the interferometer, we used a broadband source at 1550 nm and we looked at the output of the MZI with a spectrometer. Interferences modulate the continuous spectrum of the broadband source with oscillations, which get broader as the MZI gets balanced. The nearly equal-arm-length point is reached by means of a piezo nano-positioning actuator mounted on the interfering beam-splitter. The piezo-actuator is then used to tune the output phase factor to -π/2 for which maximum correlations are observed.

Fig. 3.
Fig. 3.

(Colors online). Coincidence rate after 100 m of fiber as a function of idler polarization for each of the four output states detected at 810 nm by the Si avalanche photo diodes (denoted H, V, D and A).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ φ > = 1 2 ( H ( ω s ) H ( ω i ) > + e i φ V ( ω s ) V ( ω i ) > ) ,
Φ φ = π 2 > = 1 2 ( D ( ω s ) D ( ω i ) > + e i π 2 A ( ω s ) A ( ω i ) > )

Metrics