Abstract

Using 3-dimensional numerical simulations, we investigated the characteristics and performance of essential photonic components based on the recently proposed quasi-coplanar waveguide (QCPW) including bends, couplers, and splitters. The results confirmed the QCPW’s potential in high density photonic integration. We also explored the application of various RF-originated concepts and techniques to QCPW-based photonic components to enhance and enrich their functionalities.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m," IEEE J. Quantum Electron. 43, 479-485 (2007).
    [CrossRef]
  2. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  3. D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
    [CrossRef]
  4. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323 (2004).
    [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  6. S. H. Chang, T. C. Chiu, and C. Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007).
    [CrossRef] [PubMed]
  7. Y. Satuby and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches- measurement and analysis," Opt. Express 15, 4247-4252 (2007).
    [CrossRef] [PubMed]
  8. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
    [CrossRef]
  9. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
    [CrossRef] [PubMed]
  10. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
    [CrossRef] [PubMed]
  11. R. Zia, A. Chandran, and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005).
    [CrossRef] [PubMed]
  12. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004).
    [CrossRef] [PubMed]
  13. B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  14. F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  15. B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplamonic waveguides," Appl. Phys. Lett. 90, 013114 (2007).
    [CrossRef]
  16. J. Kim, "Surface plasmon-polariton waveguiding characteristics of metal/dielectric quasi-coplanar structures," Opt. Lett. 32, 3405-3407 (2007).
    [CrossRef] [PubMed]
  17. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (New York: Wiley Interscience, 2001).
    [CrossRef]
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  19. Comsol Multiphysics, Comsol AB (Sweden).
  20. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  21. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
    [CrossRef]
  22. A. V. Krasavin and A. V. Zayatas, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 21101 (2007).
    [CrossRef]
  23. P. Berini and J. Lu, "Curved long-range surface plasmon-polariton waveguides," Opt. Express 14, 2365-2371 (2006).
    [CrossRef] [PubMed]
  24. S. Alexandrou, R. Sobolewski, and T. Y. Hsiang, "Bend-induced even and odd modes in picosecond electric tranients propagated on a coplanar waveguide," Appl. Phys. Lett. 60, 1836-1838 (1992).
    [CrossRef]
  25. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17, 1682-1692 (1999).
    [CrossRef]
  26. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, Jr., "A study of high-index-contrast 90° waveguide bend structures," Opt. Express 8, 517-528 (2001).
    [CrossRef] [PubMed]
  27. D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186-1188 (2005).
    [CrossRef] [PubMed]

2007 (7)

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplamonic waveguides," Appl. Phys. Lett. 90, 013114 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayatas, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 21101 (2007).
[CrossRef]

S. H. Chang, T. C. Chiu, and C. Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007).
[CrossRef] [PubMed]

Y. Satuby and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches- measurement and analysis," Opt. Express 15, 4247-4252 (2007).
[CrossRef] [PubMed]

J. Kim, "Surface plasmon-polariton waveguiding characteristics of metal/dielectric quasi-coplanar structures," Opt. Lett. 32, 3405-3407 (2007).
[CrossRef] [PubMed]

2006 (5)

P. Berini and J. Lu, "Curved long-range surface plasmon-polariton waveguides," Opt. Express 14, 2365-2371 (2006).
[CrossRef] [PubMed]

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

2005 (6)

2004 (2)

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323 (2004).
[CrossRef]

2003 (1)

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

2001 (1)

1999 (1)

1992 (1)

S. Alexandrou, R. Sobolewski, and T. Y. Hsiang, "Bend-induced even and odd modes in picosecond electric tranients propagated on a coplanar waveguide," Appl. Phys. Lett. 60, 1836-1838 (1992).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Ahmad, R. U.

Alexandrou, S.

S. Alexandrou, R. Sobolewski, and T. Y. Hsiang, "Bend-induced even and odd modes in picosecond electric tranients propagated on a coplanar waveguide," Appl. Phys. Lett. 60, 1836-1838 (1992).
[CrossRef]

Atwater, H. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Baehr-Jones, T.

Berini, P.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

R. Zia, A. Chandran, and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005).
[CrossRef] [PubMed]

Chandran, A.

Chang, S. H.

Chiu, T. C.

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dal Negro, L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Drezet, A.

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Espinola, R. L.

Fan, S.

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

Fukui, M.

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186-1188 (2005).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323 (2004).
[CrossRef]

Hamaguchi, M.

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Han, Z.

Haus, H. A.

He, S.

Hochberg, M.

Hohenau, A

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Hsiang, T. Y.

S. Alexandrou, R. Sobolewski, and T. Y. Hsiang, "Bend-induced even and odd modes in picosecond electric tranients propagated on a coplanar waveguide," Appl. Phys. Lett. 60, 1836-1838 (1992).
[CrossRef]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Johnson, S. G.

Kim, J.

Kobayashi, T.

F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayatas, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 21101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Kusonoki, F.

F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Laluet, J.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

Liu, L.

Lu, J.

Manolatou, C.

Okamoto, T.

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Orenstein, M.

Osgood, R. M.

Pile, D. F. P.

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186-1188 (2005).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323 (2004).
[CrossRef]

Pizzuto, F.

Satuby, Y.

Scherer, A.

Sobolewski, R.

S. Alexandrou, R. Sobolewski, and T. Y. Hsiang, "Bend-induced even and odd modes in picosecond electric tranients propagated on a coplanar waveguide," Appl. Phys. Lett. 60, 1836-1838 (1992).
[CrossRef]

Steel, M. J.

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Tai, C.

Takahara, J.

F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
[CrossRef]

Villeneuve, P. R.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Walker, C.

Wang, B.

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplamonic waveguides," Appl. Phys. Lett. 90, 013114 (2007).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplamonic waveguides," Appl. Phys. Lett. 90, 013114 (2007).
[CrossRef]

Yotsuya, T.

F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Zayatas, A. V.

A. V. Krasavin and A. V. Zayatas, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 21101 (2007).
[CrossRef]

Zia, R.

Appl. Phys. Lett. (9)

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323 (2004).
[CrossRef]

B. Steinberger, A Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplamonic waveguides," Appl. Phys. Lett. 90, 013114 (2007).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers," Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayatas, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 21101 (2007).
[CrossRef]

S. Alexandrou, R. Sobolewski, and T. Y. Hsiang, "Bend-induced even and odd modes in picosecond electric tranients propagated on a coplanar waveguide," Appl. Phys. Lett. 60, 1836-1838 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

J. Appl. Phys. (1)

D. F. P. Pile, D. K. Gramotnev, M. Hamaguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nano Lett. (1)

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Other (2)

Comsol Multiphysics, Comsol AB (Sweden).

R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (New York: Wiley Interscience, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) A schematic view of the quasi-coplanar plasmonic waveguide. Three metallic stripes are configured to mimic a V-groove structure. Laterally, however, the structure is partially open. (b) The electric field profile of the QCPW fundamental mode computed by 2D FEM calculation. The field amplitude is plotted in log scale. The arrows represent E fields. The operation wavelength is 1550 nm.

Fig. 2.
Fig. 2.

The change of power along 15 µm propagation. The dashed lines denote exponential decay. The inset shows the simulated amplitude of Ex. Also shown is the mode field distribution |E| at z=11.6 µm which retains the basic features of its 2D counterpart in Fig. 1(b). The fitting parameters are: C1=0.89, C2=0.064, Po=0.04.

Fig. 3.
Fig. 3.

(a) The computed coupling distance (Lc) of a parallel QCPW tap coupler. (b) The top view E field pattern of a QCPW tap coupler with 500 nm wETE. The starting point of the tapping channel is placed 3 µm away from the source to avoid spurious coupling. (c) and (d) shows the changes in cross-sectional E field patterns of two QCPW tap couplers with different values of wETE.

Fig. 4.
Fig. 4.

(a) The transmission T of QCPW bends as a function of the radius of curvature R defined in the inset. (b) and (c) show the amplitude of Ex along the QCPW bends with R=1 µm and R=1.65 µm, respectively. The Ex patterns show that the smaller the radius of curvature R, the severer the mode pattern distortion within the curve section. (d) The change in mode power due to propagations in pre-curve, curve, and post-curve sections. As expected, the bend with smaller R causes steeper power loss both within the curve and the post-curve sections.

Fig. 5.
Fig. 5.

A QCPW bend and the electric field pattern before (a) and after (b) incorporation of an “air-bridge.” The radius of curvature R is 1 µm. The reduction in mode distortion in the air-bridged QCPW bend is clearly shown.

Fig. 6.
Fig. 6.

(a) The change of mode power along the propagation through QCPW bends with or without an air-bridge. (b) The frequency dependence of air-bridge induced T enhancement.

Fig. 7.
Fig. 7.

The log-scale |E| patterns of (a) the left half-mode and (b) right half-mode computed by 2D simulations. (c) The full-mode recovery capability of a half-mode is demonstrated using a QCPW section with a partially open top stripe. Due to the disappearance of the right top stripe, the mode becomes a left half-mode at a-a’. Once the top stripe is recovered, a full-mode is recovered along the propagation. At b-b’, the recovery is completed. No noticeable loss in excess of the Ohmic loss was caused by the recovery process.

Fig. 8.
Fig. 8.

Another example of the half-mode’s capability of full-mode recovery is demonstrated using a QCPW with curved top and base stripes. The widening of the gap between the top stripes split a full-mode (a-a’) into two half-modes. Once the gap narrows back (b-b’), a full-mode is formed again. At b-b’, a 3.2 dB penalty was measured beyond the Ohmic loss. It was mostly due to the half-mode propagation rather than the recovery itself.

Fig. 9.
Fig. 9.

(a) The splitting efficiency of QCPW-based Y-splitter as a function of splitting distance Ls. (b) and (c) show the Ex field patterns of Y-branches with Ls=1 µm and 4 µm, respectively. It is clear that a longer La impedes the subsequent recovery of a full-mode in each of the branches and results in a lower splitting efficiency. (d) A 3 µm long Mach-Zehnder interferometer made by bridging two Y-splitters with one straight section pair. (e) The mode power measured along the dotted line indicates 40.4 % overall transmission.

Metrics