Abstract

Supercontinuum generation is demonstrated in a 5-cm-long water-core photonic crystal fiber pumped near water’s zero-dispersion wavelength. Up to 500-nm spectral width (evaluated at -20 dB from the peak) is achieved, while spectral widths were over 4 times narrower with a bulk setup at the same wavelength and peak power, and over 3 times narrower if the PCF was pumped away from the zero-dispersion wavelength. The supercontinuum generation mechanisms for bulk and waveguide setups are compared and tuning of the zero-dispersion wavelength via waveguide dispersion is theoretically investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-596 (1970).
    [CrossRef]
  2. R. R. Alfano, The supercontinuum laser source, 2nd Edition (Springer-Verlag, New York, 1989).
  3. C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dipersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  6. P. St. J. Russell, "Photonic-Crystal fibers," J. Lightwave Technol. 12, 4729-4749 (2006).
    [CrossRef]
  7. G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Laderer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14, 1596-1603 (2006).
    [CrossRef] [PubMed]
  8. R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  9. J. Hult, R. S. Watt, and C. F. Kaminski, "Dispersion measurement in optical fibers using supercontinuum pulses," J. Lightwave Technol. 25, 820-824 (2007).
    [CrossRef]
  10. S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
    [CrossRef]
  11. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  12. S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12786-12891 (2007).
    [CrossRef]
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Férvrier, P. Roy, J. L. Auguste, and J. M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  14. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
    [CrossRef] [PubMed]
  15. A. S. L. Gomes, E. L. Falcão-Filho, C. B. de Araújo, D. Ratativa, and R. E. de Araújo, "Thermally managed eclipse Z-scan," Opt. Express 15, 1712-1717 (2007).
    [CrossRef] [PubMed]
  16. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
    [CrossRef]
  17. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  18. A. G. V. Engen, S. A. Diddams, and T. Clement, "Dispersion measurements of water with white-light interferometry," Appl. Opt. 37, 5679-5686 (1998).
    [CrossRef]
  19. M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2002).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, San Diego, 2001).
  21. I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
    [CrossRef]
  22. L. de Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, "Z-scan measurements using femtosecond continuum generation," Opt. Express 12, 3921-43927 (2004).
    [CrossRef] [PubMed]
  23. A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999).
    [CrossRef]
  24. A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000).
    [CrossRef] [PubMed]
  25. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
    [CrossRef]
  26. Crystal Fibre A/S, http://www.crystal-fibre.com.
  27. Y.-F. Li, M. C.-Y. Wang, and M.-L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004).
    [CrossRef]

2007 (4)

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12786-12891 (2007).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
[CrossRef]

A. S. L. Gomes, E. L. Falcão-Filho, C. B. de Araújo, D. Ratativa, and R. E. de Araújo, "Thermally managed eclipse Z-scan," Opt. Express 15, 1712-1717 (2007).
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, "Dispersion measurement in optical fibers using supercontinuum pulses," J. Lightwave Technol. 25, 820-824 (2007).
[CrossRef]

2006 (5)

G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Laderer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14, 1596-1603 (2006).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

P. St. J. Russell, "Photonic-Crystal fibers," J. Lightwave Technol. 12, 4729-4749 (2006).
[CrossRef]

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

2005 (2)

2004 (3)

L. de Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, "Z-scan measurements using femtosecond continuum generation," Opt. Express 12, 3921-43927 (2004).
[CrossRef] [PubMed]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Y.-F. Li, M. C.-Y. Wang, and M.-L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004).
[CrossRef]

2003 (1)

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
[CrossRef]

2000 (3)

A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dipersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1994 (1)

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

1976 (1)

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-596 (1970).
[CrossRef]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-596 (1970).
[CrossRef]

Andrade, A. A.

Ania-Castanon, J. D.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Auguste, J. L.

Barth, M.

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12786-12891 (2007).
[CrossRef]

Benson, O.

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12786-12891 (2007).
[CrossRef]

Birks, T. A.

Blondy, J. M.

Breuer, E. I.

Brodeur, A.

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
[CrossRef]

Chin, S. L.

Chinaud, J.

Clement, T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

de Araújo, C. B.

de Araújo, R. E.

de Boni, L.

Delaye, P.

Demokan, M. S.

Diddams, S. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
[CrossRef]

Ellingham, T. J.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Engen, A. G. V.

Falcão-Filho, E. L.

Férvrier, S.

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Foggi, P.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Frey, R.

Gaeta, A. L.

A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Giessen, H.

Gomes, A. S. L.

Hänsch, T. W.

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Ho, H. L.

Holzwarth, R.

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Hoo, Y. L.

Hu, M.-L.

Y.-F. Li, M. C.-Y. Wang, and M.-L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Hult, J.

Humbert, G.

Jin, W.

Kaminski, C. F.

Katona, G.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
[CrossRef]

Knight, J. C.

Kobtsev, S. M.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Kolesik, M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
[CrossRef]

Kopf, D.

Kukarin, S.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Laderer, M. J.

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
[CrossRef]

Leon-Saval, S. G.

Li, Y.-F.

Y.-F. Li, M. C.-Y. Wang, and M.-L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Lin, C.

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Mendonça, C. R.

Misoguti, L.

Moloney, J. V.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
[CrossRef]

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
[CrossRef]

Ranka, J. K.

Ratativa, D.

Reichert, J.

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Righini, R.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Roosen, G.

Rouvie, A.

Roy, P.

Russell, P. St. J.

P. St. J. Russell, "Photonic-Crystal fibers," J. Lightwave Technol. 12, 4729-4749 (2006).
[CrossRef]

G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Laderer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14, 1596-1603 (2006).
[CrossRef] [PubMed]

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Santa, I.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-596 (1970).
[CrossRef]

Smirnov, S. V.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Smolka, S.

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12786-12891 (2007).
[CrossRef]

Stentz, A. J.

Stifter, D.

Stolen, R. H.

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Teipel, J.

Turitsyn, S. K.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Udem, T.

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Viale, P.

Wadsworth, W. J.

Wang, M. C.-Y.

Y.-F. Li, M. C.-Y. Wang, and M.-L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Watt, R. S.

Wiesauer, K.

Williams, J. H.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Windeler, R. S.

Wright, E. M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
[CrossRef]

Xiao, L.

Yiou, S.

Zhang, R.

Zhao, C.

Zilio, S. C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Integrated liquid core waveguides for nonlinear optics," Appl. Phys. Lett. 90, 101101 (2007).
[CrossRef]

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Meas. Sci. Technol. (1)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Opt. Commun. (1)

Y.-F. Li, M. C.-Y. Wang, and M.-L. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Opt. Express (7)

L. de Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, "Z-scan measurements using femtosecond continuum generation," Opt. Express 12, 3921-43927 (2004).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12786-12891 (2007).
[CrossRef]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Férvrier, P. Roy, J. L. Auguste, and J. M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
[CrossRef] [PubMed]

A. S. L. Gomes, E. L. Falcão-Filho, C. B. de Araújo, D. Ratativa, and R. E. de Araújo, "Thermally managed eclipse Z-scan," Opt. Express 15, 1712-1717 (2007).
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Laderer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14, 1596-1603 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinnum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (4)

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-596 (1970).
[CrossRef]

R. Holzwarth, J. Reichert, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell "An optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000).
[CrossRef] [PubMed]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 43905 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (4)

R. R. Alfano, The supercontinuum laser source, 2nd Edition (Springer-Verlag, New York, 1989).

M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2002).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, San Diego, 2001).

Crystal Fibre A/S, http://www.crystal-fibre.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup used for obtaining supercontinuum generation in a water-core PCF and SEM image of the PCF’s cross-sectional profile.

Fig. 2.
Fig. 2.

PCF output spectra with 800-nm (a) and 980-nm (b) pumping for launched peak powers of 90 kW (red) 470 kW (blue) and 940 kW (black). Vertical arrows indicate the pump wavelengths; dashed curves: transmission spectrum over 5 cm of water [19].

Fig. 3.
Fig. 3.

PCF output spectra with 800-nm and 0.94-MW launched peak power pumping (a) and with 980-nm and 1.45-MW launched peak power pumping (b) for water-core PCF (top) and bulk water (bottom) samples.

Fig. 4.
Fig. 4.

ZDW as a function of core diameter for commercial PCFs [26] with water-filled cores.

Tables (1)

Tables Icon

Table 1. Summary of the spectral widths (at -20 dB) obtained in water with the tested pump wavelengths and configurations, for a 0.94 MW peak power (except for *: 1.45 MW peak power).

Metrics