Abstract

Several strong narrowband resonances are observed in the transmission spectra of fiber Bragg gratings photo-written in photonic crystal fiber that has a refractive index-neutral germanium/fluorine co-doped core. Experimental results for the strain, temperature and refractive index sensitivities of these mode resonances are reported and compared to those of conventional single mode fiber. In particular, we identify three kinds of resonances whose relative sensitivities to strain, temperature and refractive index are markedly different and present numerical simulations to explain these properties. Potential multiparameter optical sensor applications of these mode resonances are briefly discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  3. J. C. Flanagan, R. Amezcua-Correa, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, "Parasitic modes in large mode area microstructured fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2007), paper OML4.
  4. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in airsilica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  5. V. Beugin, L. Bigot, P. May, M. Lancry, Y. Quiquempois, M. Douay, G. Melin, A. Fleureau, S. Lempereur, and L. Gasca, "Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber," Appl. Opt. 45, 8186-8193 (2006).
    [CrossRef] [PubMed]
  6. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  7. C. Chen and J. Albert, "Strain-optic coefficients of the individual cladding modes of a single mode fiber: theory and experiment," Electron. Lett. 42, 1027-1028 (2006).
    [CrossRef]
  8. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, "Optical fiber refractometer using narrowband cladding mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
    [CrossRef] [PubMed]
  9. O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
    [CrossRef]
  10. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, "Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings," Opt. Express 15, 7876-7887 (2007).
    [CrossRef] [PubMed]
  11. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
    [CrossRef]
  12. C. Chen, L. Xiong, C. Caucheteur, P. Mégret, and J. Albert, "Differential strain sensitivity of higher order cladding modes in weakly tilted fiber Bragg gratings," Proc. SPIE 6379, 63790E1-7 (2006).
  13. G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
    [CrossRef]
  14. H. J. Patrick, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  15. A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
    [CrossRef]
  16. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, "Tilted fiber Bragg grating photowritten in microstructured optical fiber for improved refractive index measurement," Opt. Express 14, 10359-10370 (2006).
    [CrossRef]
  17. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007).
    [CrossRef] [PubMed]
  18. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  19. V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4, 457-466 (1999).
    [CrossRef] [PubMed]

2008

2007

2006

2005

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
[CrossRef]

2004

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

2003

2001

G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

2000

1999

1998

1996

Albert, J.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, "Optical fiber refractometer using narrowband cladding mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
[CrossRef] [PubMed]

C. Chen and J. Albert, "Strain-optic coefficients of the individual cladding modes of a single mode fiber: theory and experiment," Electron. Lett. 42, 1027-1028 (2006).
[CrossRef]

Araújo, F. M.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
[CrossRef]

Asatryan, A. A.

Atkin, D. M.

Berini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

Beugin, V.

Bhatia, V.

Bigot, L.

Birks, T. A.

Blanc, W.

Botten, L. C.

Buckley, E.

Burdge, G. L.

Canning, J.

Chan, C. F.

Chen, C.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, "Optical fiber refractometer using narrowband cladding mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
[CrossRef] [PubMed]

C. Chen and J. Albert, "Strain-optic coefficients of the individual cladding modes of a single mode fiber: theory and experiment," Electron. Lett. 42, 1027-1028 (2006).
[CrossRef]

Cordeiro, C. M. B.

Cox, F. M.

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

Dewynter, V.

Douay, M.

Dussardier, B.

Eggleton, B. J.

Fan, X.

Ferdinand, P.

Ferreira, L. A.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
[CrossRef]

Fleureau, A.

Frazão, O.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
[CrossRef]

Gasca, L.

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

Groothoff, N.

Huy, M. C. P.

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

Jafari, A.

Kan, D. J.

Kerbage, C.

Knight, J. C.

Labonté, L.

Laffont, G.

Lancry, M.

Large, M. C. J.

Laronche, A.

Lempereur, S.

Lwin, R.

Lyttikainen, K.

Marshall, G. D.

May, P.

Melin, G.

Pagnoux, D.

Patrick, H. J.

Quiquempois, Y.

Roy, P.

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Santos, J. L.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
[CrossRef]

Spalter, S.

Strasser, T. A.

Thomson, D. J.

Westbrook, P. S.

White, C. A.

White, I. M.

Windeler, R. S.

Withford, M. J.

Zagari, J.

Appl. Opt.

Electron. Lett.

C. Chen and J. Albert, "Strain-optic coefficients of the individual cladding modes of a single mode fiber: theory and experiment," Electron. Lett. 42, 1027-1028 (2006).
[CrossRef]

Fiber Integrated Opt.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, "Applications of fiber optic grating technology to multi-parameter measurement," Fiber Integrated Opt. 24, 227-244 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Iadicicco, A. Cusano, A. Cutolo, R. Berini, and M. Giordano, "Thinned fiber Bragg gratings as high sensitivity refractive index sensor," IEEE Photon. Technol. Lett. 16, 1149-1151 (2004).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Science

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

J. C. Flanagan, R. Amezcua-Correa, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, "Parasitic modes in large mode area microstructured fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2007), paper OML4.

C. Chen, L. Xiong, C. Caucheteur, P. Mégret, and J. Albert, "Differential strain sensitivity of higher order cladding modes in weakly tilted fiber Bragg gratings," Proc. SPIE 6379, 63790E1-7 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The cross section of the photonic crystal fiber used in the experiment (outside fiber diameter=125 µm). The doped core is not visible in these photographs.

Fig. 2.
Fig. 2.

The transmission and reflection spectra of a 1 cm-long FBG in PCF.

Fig. 3.
Fig. 3.

The electric field intensities of the core mode and cladding modes, the insets show an enlarged view of the core area.

Fig. 4.
Fig. 4.

The relative wavelength shifts of cladding mode resonances to the Bragg resonance of FBG due to axial strain perturbations.

Fig. 5.
Fig. 5.

The strain sensitivity differences of core and cladding modes in the PCF and SMF-28 fiber

Fig. 6.
Fig. 6.

The relative wavelength shifts of cladding mode resonances to the Bragg resonance of FBG due to temperature perturbations.

Fig. 7.
Fig. 7.

The relative wavelength shifts of cladding mode resonances to the Bragg resonance of FBG with surrounding refractive index (nD) changes.

Tables (1)

Tables Icon

Table 1. Summary of transmission resonances properties

Metrics