Abstract

Near-field focusing properties of zone plates are investigated in the visible regime by a 3-dimensional finite-difference time-domain method. It is shown that Frensel zone plates (FZPs) with metallic coatings can achieve subwavelength focusing in the visible wavelength. The characteristics of subwavelength focusing are found to be independent of the type of metal coatings used. All the FZPs exhibit similar shift in focal length and depth of focus when compared with classical calculations. These results indicate that plasmonic waves do not contribute to subwavelength focusing. Instead the subwavelength focusing characteristic is attributed to the interference of diffracted evanescent waves from a large numerical aperture. It is found that the near-field focusing of FZPs suppresses higher order foci such that the corresponding diffraction efficiency is improved. The use of phase zone plate structured on glass without opaque coating is proposed to improve the diffraction efficiency of subwavelength focusing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
    [CrossRef]
  2. W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
    [CrossRef]
  3. D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
    [CrossRef]
  4. H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
    [CrossRef]
  5. D. Marks and P. S. Carney, "Near-field diffractive elements," Opt. Lett. 30, 1870-1872 (2005).
    [CrossRef] [PubMed]
  6. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
    [CrossRef]
  7. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, Cambridge, 2000).
  8. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, Boston, 1991).
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  10. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  11. T. D. Beynon and R. M. R. Strange, "Computational study of diffraction patterns for near-field Fresnel and Gabor zone plates," J. Opt. Soc. Am. A 17, 101-106 (2000).
    [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  13. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  15. M. H. Horman, "Efficiences of zone plates and phase zone plates," Appl. Opt. 6, 2011-2013 (1967).
    [CrossRef] [PubMed]
  16. A. R. Jones, "The focal properties of phase zone plates," British J. Appl. Phys. D 2, 1789-1791 (1969).
    [CrossRef]
  17. B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
    [CrossRef]

2007 (1)

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

2006 (2)

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
[CrossRef]

T. D. Beynon and R. M. R. Strange, "Computational study of diffraction patterns for near-field Fresnel and Gabor zone plates," J. Opt. Soc. Am. A 17, 101-106 (2000).
[CrossRef]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1992 (1)

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

1969 (1)

A. R. Jones, "The focal properties of phase zone plates," British J. Appl. Phys. D 2, 1789-1791 (1969).
[CrossRef]

1967 (1)

Anderson, E. H.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Attwood, D.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Baciocchi, M.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Bajikar, S.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Barbastathis, G.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

Beynon, T. D.

Cai, Z.

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

Carney, P. S.

Carter, D. J. D.

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
[CrossRef]

Cerrina, F.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Chao, D.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

Chao, W.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Chrzas, J.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Denbeaux, G.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Denton, D.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Di Fabrizio, E.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Du, C. L.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Fu, Y.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Gentili, M.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Gil, D.

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
[CrossRef]

Grella, L.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Harteneck, B.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Horman, M. H.

Jones, A. R.

A. R. Jones, "The focal properties of phase zone plates," British J. Appl. Phys. D 2, 1789-1791 (1969).
[CrossRef]

Lai, B.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Legnini, D.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Luo, X. G.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

Marks, D.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Menon, R.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
[CrossRef]

Nugent, K. A.

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

Olynick, D.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Patel, A.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

Paterson, D.

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

Pearson, A. L.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Peele, A. G.

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

Pellerin, K. M.

Quiney, H. M.

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

Salmassi, F.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Smith, H. I.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
[CrossRef]

Song, C.

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

Strange, R. M. R.

Thio, T.

Viccaro, P. J.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Walsh, M.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

White, V.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Xiao, Y.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Yun, W. B.

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phy. Lett. (1)

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phy. Lett. 91, 061124 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella, and M. Baciocchi, "Hard X-ray phase zone plate fabricated by lithographic techniques," Appl. Phys. Lett. 61, 1877-1879 (1992).
[CrossRef]

British J. Appl. Phys. D (1)

A. R. Jones, "The focal properties of phase zone plates," British J. Appl. Phys. D 2, 1789-1791 (1969).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (2)

W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, "Demonstration of 20 nm half-pitch spatial resolution with soft X-ray microscopy," J. Vac. Sci. Technol. B 21, 3108-3111 (2003).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, "Lithographic patterning and confocal imaging with zone plates," J. Vac. Sci. Technol. B 18, 2881-2885 (2000).
[CrossRef]

Microelectron. Eng. (1)

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, "Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography," Microelectron. Eng. 83, 956-961 (2006).
[CrossRef]

Nat. Phys. (1)

H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, "Diffractive imaging of highly focused X-ray fields," Nat. Phys. 2, 101-104 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (3)

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, Cambridge, 2000).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, Boston, 1991).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Construction of Fresnel zone plate (adapted from [7])

Fig. 2.
Fig. 2.

(a). Plots of intensity distribution of the transmitted electric fields in xz plane (y=0): (i)-(iv); yz plane (x=0): (v)-(viii); and xy(z=fc ): (ix)-(xii). Plots of focal spot intensities along (b) x(y=0, z=fc ) (c) y(x=0, z=fc ) and (d) z(x=y=0) directions. fc is the focal length obtained from the FDTD simulation. The white boxes drawn in Fig. 1(a) are the cross section of the metal coatings.

Fig. 3.
Fig. 3.

Shift of focal length (from its designed values) versus designed focal lengths (i.e., 0.5 µm, 1µm, 2 µm and 5 µm). It is assumed that the wavelength of incident plane wave is 633 nm and thickness of all metal films is 300 nm.

Fig. 4.
Fig. 4.

(a). Profile of electric field intensity (in a.u.) along the z (x=y=0) direction. The inset shows focal length and DoF versus Ag thickness. (b). Profile of electric field intensity (in a.u.) along x (z=fc ) direction. Inset plots the peak intensity and FWHM of the focal spot versus film thickness. The FZPs have focal length of 0.5 µm under the illumination of 633 nm plane wave.

Fig. 5.
Fig. 5.

Plots of deviations of phase difference (from constructive interference from all 8 transparent zones) versus z direction normalized by f.

Fig. 6.
Fig. 6.

Plots of transmission spectra versus illumination wavelength through a hole (of 300 nm in diameter) from a 300 nm thick Ag film surrounded by annular corrugations (with periodic and FZP structures) with etch depth of 60 nm on both sides of the films.

Fig. 7.
Fig. 7.

Electric field intensity distribution verses x (y=0 and z=fc ) direction for phase zone plates with f=0.5 to 5.0 µm etched on glass all with etch depth of 300 nm.

Fig. 8.
Fig. 8.

Peak electric field intensity (in a.u.) versus etch depths at focal plane for focal length equal to 0.5 µm, 1 µm, 2 µm and 5 µm. Fresnel zone structure (8 zones) was etched on glass substrate for 100–692 nm depths. Wavelength of incident plane wave is 633 nm.

Fig. 9.
Fig. 9.

(a). Electric field intensity distribution (in a.u.) along the x (y=0 and z=fc ) direction. The inset shows peak electric field intensity and focal spot size (FWHM) at various etch depths (b). Electric field intensity distribution (a.u.) along the z direction (x=y=0). Inset shows actual focal length and DoF versus etch depths. Fresnel zone structure was etched on glass substrate for 100–692 nm depths. Wavelength of incident plane wave is 633 nm. 8 Fresnel zones are designed for focusing at 0.5 µm.

Fig. 10.
Fig. 10.

(a). Electric field intensity distribution (in a.u.) along the x (y=0 and z=fc ) direction. The inset shows peak electric field intensity and focal spot size (FWHM) at various etch depths (b) Electric field intensity distribution (a.u.) along the z direction (x=y=0). Inset shows actual focal length and DoF versus etch depths. Fresnel zone structure was etched on glass substrate for 100–692 nm depths. Wavelength of incident plane wave is 633 nm. 8 Fresnel zones are designed for focusing at 5 µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r n = n λ f + n 2 λ 2 4
Δ ϕ n = r n 2 z 2 r n 1 2 z 2 λ 2
k sp = k r ± i G r
ϕ = 2 π λ ( n sub 1 ) t
I N 2 ( 1 cos ϕ )

Metrics