Abstract

A diode-pumped, prismless Nd:glass laser oscillator, mode-locked by a semiconductor saturable absorber, was stabilized against self-Q-switching by using a phase-mismatched second harmonic crystal. Furthermore, negative-index cascaded second-order nonlinearity provided the soliton shaping mechanism with normal intracavity dispersion. Nearly Fourier-limited pulses as short as 520 fs were obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, "Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system," Opt. Lett. 22, 1790-1792 (1997).
    [CrossRef]
  2. G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
    [CrossRef]
  3. N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
    [CrossRef]
  4. D. Kopf, F. X. Kärtner, U. Keller, and K. J. Weingarten, "Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry-Perot saturable absorber," Opt. Lett. 20, 1169-1171 (1995).
    [CrossRef] [PubMed]
  5. C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, "Efficient and tunable diode-pumped femtosecond Yb:glass lasers," Opt. Lett. 23, 126-128 (1998).
    [CrossRef]
  6. W. Lu, L. Yan, and C. R. Menyuk, "Kerr-lens mode-locking of Nd:glass laser," Opt. Commun. 200, 159-163 (2001).
    [CrossRef]
  7. L. J. Qian, X. Liu, and F. W. Wise, "Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts," Opt. Lett. 24, 166-168 (1999).
    [CrossRef]
  8. A. Agnesi, A. Guandalini, A. Tomaselli, E. Sani, A. Toncelli, and M. Tonelli, "Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser," Opt. Lett. 29, 1638-1640 (2004).
    [CrossRef] [PubMed]
  9. A. Agnesi, A. Guandalini, and G. Reali, "Self-stablized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser," Appl. Phys. Lett. 86, 171105 (2005).
    [CrossRef]
  10. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
    [CrossRef]
  11. A. Agnesi, L. Carrà, and G. Reali, "Phosphate Nd:glass materials for femtosecond pulse generation," accepted for publication in Optical Materials (2008).
  12. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]
  13. P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
    [CrossRef]

2007 (1)

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

2005 (1)

A. Agnesi, A. Guandalini, and G. Reali, "Self-stablized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser," Appl. Phys. Lett. 86, 171105 (2005).
[CrossRef]

2004 (2)

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

A. Agnesi, A. Guandalini, A. Tomaselli, E. Sani, A. Toncelli, and M. Tonelli, "Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser," Opt. Lett. 29, 1638-1640 (2004).
[CrossRef] [PubMed]

2002 (1)

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

2001 (1)

W. Lu, L. Yan, and C. R. Menyuk, "Kerr-lens mode-locking of Nd:glass laser," Opt. Commun. 200, 159-163 (2001).
[CrossRef]

2000 (1)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

1995 (1)

Adomavicius, R.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Agnesi, A.

A. Agnesi, A. Guandalini, and G. Reali, "Self-stablized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser," Appl. Phys. Lett. 86, 171105 (2005).
[CrossRef]

A. Agnesi, A. Guandalini, A. Tomaselli, E. Sani, A. Toncelli, and M. Tonelli, "Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser," Opt. Lett. 29, 1638-1640 (2004).
[CrossRef] [PubMed]

A. Agnesi, L. Carrà, and G. Reali, "Phosphate Nd:glass materials for femtosecond pulse generation," accepted for publication in Optical Materials (2008).

Arecchi, F. T.

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

Bellini, M.

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

Bertulis, K.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Braun, A.

Brovelli, L. R.

Carrà, L.

A. Agnesi, L. Carrà, and G. Reali, "Phosphate Nd:glass materials for femtosecond pulse generation," accepted for publication in Optical Materials (2008).

Choquet, D.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

Danielius, R.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Deguil, N.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

Ducci, S.

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

Giniunas, L.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Guandalini, A.

A. Agnesi, A. Guandalini, and G. Reali, "Self-stablized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser," Appl. Phys. Lett. 86, 171105 (2005).
[CrossRef]

A. Agnesi, A. Guandalini, A. Tomaselli, E. Sani, A. Toncelli, and M. Tonelli, "Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser," Opt. Lett. 29, 1638-1640 (2004).
[CrossRef] [PubMed]

Harder, C.

Hönninger, C.

Horvath, C.

Ippen, E. F.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
[CrossRef]

Juhasz, T.

Kärtner, F. X.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
[CrossRef]

D. Kopf, F. X. Kärtner, U. Keller, and K. J. Weingarten, "Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry-Perot saturable absorber," Opt. Lett. 20, 1169-1171 (1995).
[CrossRef] [PubMed]

Keller, U.

Kopf, D.

Krotkus, A.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Legros, P.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

Liu, H.

Liu, X.

Lu, W.

W. Lu, L. Yan, and C. R. Menyuk, "Kerr-lens mode-locking of Nd:glass laser," Opt. Commun. 200, 159-163 (2001).
[CrossRef]

Menyuk, C. R.

W. Lu, L. Yan, and C. R. Menyuk, "Kerr-lens mode-locking of Nd:glass laser," Opt. Commun. 200, 159-163 (2001).
[CrossRef]

Molis, G.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Mottay, E.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

Mourou, G.

Paschotta, R.

Pocius, J.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

Qian, L. J.

Ramazza, P. L.

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

Reali, G.

A. Agnesi, A. Guandalini, and G. Reali, "Self-stablized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser," Appl. Phys. Lett. 86, 171105 (2005).
[CrossRef]

A. Agnesi, L. Carrà, and G. Reali, "Phosphate Nd:glass materials for femtosecond pulse generation," accepted for publication in Optical Materials (2008).

Salin, F.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

Sani, E.

Schibli, T. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
[CrossRef]

Thoen, E. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
[CrossRef]

Tomaselli, A.

Toncelli, A.

Tonelli, M.

Weingarten, K. J.

Wise, F. W.

Yan, L.

W. Lu, L. Yan, and C. R. Menyuk, "Kerr-lens mode-locking of Nd:glass laser," Opt. Commun. 200, 159-163 (2001).
[CrossRef]

Zavatta, A.

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

Appl. Phys. B (2)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. F. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, 41-49 (2000).
[CrossRef]

P. L. Ramazza, S. Ducci, A. Zavatta, M. Bellini, and F. T. Arecchi, "Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties," Appl. Phys. B 75, 53-58 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Agnesi, A. Guandalini, and G. Reali, "Self-stablized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser," Appl. Phys. Lett. 86, 171105 (2005).
[CrossRef]

Electron. Lett. (1)

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser," Electron. Lett. 43, 190-191 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microsc. Res. Tech. (1)

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
[CrossRef]

Opt. Commun. (1)

W. Lu, L. Yan, and C. R. Menyuk, "Kerr-lens mode-locking of Nd:glass laser," Opt. Commun. 200, 159-163 (2001).
[CrossRef]

Opt. Lett. (5)

Other (1)

A. Agnesi, L. Carrà, and G. Reali, "Phosphate Nd:glass materials for femtosecond pulse generation," accepted for publication in Optical Materials (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Layout of the Nd:glass oscillator. L1: 8-mm focal collimating aspheric lens; C1, C2: cylindrical telescope (15×); L2: 75-mm focal achromat lens; M1, M2: concave mirrors (radius of curvature=100 mm), HR/HT at 1054/800 nm; M3: plane mirror, for cw laser alignment; M4: concave mirror; SAM: saturable absorber mirror; LBO: nonlinear crystal; OC: output coupler; P1, P2: SF10 prisms.

Fig. 2.
Fig. 2.

Pulse autocorrelations (background-free noncollinear SHG) and spectra (inset). Femtosecond operation with prisms (red) and with LBO crystal phase-mismatched in the prismless cavity (blue). Thin black lines: best-fit with sech 2 pulse intensity profile.

Fig. 3.
Fig. 3.

Pulse trains of the passively mode-locked prismless laser, recorded by a 1-GHz bandwidth oscilloscope and by a 8-GHz RF-spectrum analyzer without (a) and with (b) the LBO crystal, properly tuned off-phase-matching.

Tables (1)

Tables Icon

Table 1. FOM comparison of SPM in different nonlinear crystals for SHG at 1054-nm fundamental wavelength (GVM parameters calculated by Sellmeier equations).

Metrics