Abstract

We report on the soliton trapping in a fiber ring laser mode-locked with a SESAM. It was observed that solitons along the two orthogonal polarization directions of the cavity with fairly large difference in central frequency and energy could be coupled together to form a group velocity locked vector soliton. In particular, due to that each of the coupled solitons forms its own soliton sidebands, two sets of soliton sidebands could be observed on the vector soliton spectrum. Numerical simulations have well confirmed the experimental observations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Menyuk, "Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes," Opt. Lett. 12, 614-616 (1987).
    [CrossRef] [PubMed]
  2. C. R. Menyuk, "Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes," J. Opt. Soc. Am. B 5, 392-402 (1988).
    [CrossRef]
  3. M. N. Islam, C. D. Poole, and J. P. Gordon, "Soliton trapping in birefringent optical fibers," Opt. Lett. 14, 1011-1013 (1989).
    [CrossRef] [PubMed]
  4. E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, "Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers," Opt. Lett. 30, 132-134 (2005)
    [CrossRef] [PubMed]
  5. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
    [CrossRef]
  6. S. Cundiff, B. Collings, and W. Knox, "Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser," Opt. Express 1, 12-21 (1997).
    [CrossRef] [PubMed]
  7. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
    [CrossRef]
  8. S. T. Cundiff, B. C. Collings, and K. Bergman, "polarization locked vector solitons and axis instability in optical fiber," Chaos 10, 613-624 (2000).
    [CrossRef]
  9. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
    [CrossRef]
  10. N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, "Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response," Opt. Lett. 23, 280-282 (1998).
    [CrossRef]

2005

E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, "Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers," Opt. Lett. 30, 132-134 (2005)
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

2000

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, and K. Bergman, "polarization locked vector solitons and axis instability in optical fiber," Chaos 10, 613-624 (2000).
[CrossRef]

1998

1997

1992

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

1989

1988

1987

Akhmediev, N. N.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, "Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response," Opt. Lett. 23, 280-282 (1998).
[CrossRef]

Ankiewicz, A.

Bergman, K.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, and K. Bergman, "polarization locked vector solitons and axis instability in optical fiber," Chaos 10, 613-624 (2000).
[CrossRef]

Collings, B.

Collings, B. C.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, and K. Bergman, "polarization locked vector solitons and axis instability in optical fiber," Chaos 10, 613-624 (2000).
[CrossRef]

Cundiff, S.

Cundiff, S. T.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, and K. Bergman, "polarization locked vector solitons and axis instability in optical fiber," Chaos 10, 613-624 (2000).
[CrossRef]

Gordon, J. P.

Islam, M. N.

Kelly, S. M. J.

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

Knox, W.

Knox, W. H.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

Korolev, E.

Lederer, M. J.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Luther-Davies, B.

Menyuk, C. R.

Nazarov, V. N.

Nolan, D. A.

Poole, C. D.

Soto-Crespo, J. M.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Truesdale, C. M.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Chaos

S. T. Cundiff, B. C. Collings, and K. Bergman, "polarization locked vector solitons and axis instability in optical fiber," Chaos 10, 613-624 (2000).
[CrossRef]

Electron. Lett.

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

J. Opt. Soc. Am B

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temperal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am B 17, 354-365 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the fiber laser. SESAM: semiconductor saturable absorber mirror; PC: polarization controller; WDM: wavelength-division multiplexer; EDF: erbium-doped fiber.

Fig. 2.
Fig. 2.

A typical vector soliton experimentally obtained. (a) Optical spectrum and the corresponding autocorrelation trace; (b) RF spectrum after an external linear polarizer.

Fig. 3.
Fig. 3.

The experimentally obtained vector soliton with soliton trapping: (a) Optical spectrum; (b) RF spectrum after an external linear polarizer.

Fig. 4.
Fig. 4.

The optical spectrum of the numerically obtained vector soliton with same parameters except that (a) Lb=L/2; (b) Lb=L/20; (c) Lb=L/200.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ u z = i β u δ u t i k 2 2 u t 2 + i k 6 3 u t 3 + i γ ( u 2 + 2 3 ν 2 ) u + i γ 3 ν 2 u * + g 2 u + g 2 Ω g 2 2 u t 2 ν z = i β ν + δ ν t i k 2 2 ν t 2 + i k 6 3 ν t 3 + i γ ( ν 2 + 2 3 u 2 ) ν + i γ 3 u 2 ν * + g 2 ν + g 2 Ω g 2 2 ν t 2
g = G exp [ ( u 2 + v 2 ) dt P sat ]
l s t = l s l 0 T rec u 2 + ν 2 E sat l s

Metrics