Abstract

The transverse spatial structure of an optically-pumped, Vertical External Cavity Surface Emitting Laser is investigated experimentally. The Fresnel number of the laser cavity is controlled with an intracavity lens. We show how the emission profile changes when passing from a low to a high Fresnel number configuration and analyze the RF spectrum of the total laser intensity. Though the laser operates in a multi-longitudinal mode configuration, the transverse profile of the laser emission shows well organized patterns.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
    [CrossRef] [PubMed]
  2. U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
    [CrossRef]
  3. N. N. Rosanov and N. V. Fedorov, "Diffraction switching waves and autosolitons in a saturable-absorber laser," Optik.Spectrosk. 72, 1394 (1992).
  4. V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997).
    [CrossRef]
  5. M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
    [CrossRef]
  6. S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
    [CrossRef] [PubMed]
  7. S. Barbay, Y. Ménesguen, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, "Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier," Opt. Lett. 31, 1504-1506 (2006).
    [CrossRef] [PubMed]
  8. F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999).
    [CrossRef]
  9. C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
    [CrossRef]
  10. J. Scheuer and M. Orenstein, "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285(5425), 230-233 (1999).
    [CrossRef] [PubMed]
  11. S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
    [CrossRef]
  12. I. V. Babushkin, N. A. Loiko, and T. Ackemann, "Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers," Phys. Rev. E 69, 066,205 (2004).
    [CrossRef]
  13. T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
    [CrossRef]
  14. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surfaceemitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
    [CrossRef] [PubMed]
  15. H. Liu, M. Yan, P. Shum, H. Ghafouri-Shiraz, and D. Liu, "Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers," Opt. Express 12, 4269-4274 (2004).
    [CrossRef] [PubMed]
  16. Y. F. Chen and Y. P. Lan, "Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking," Phys. Rev. A 64, 063,807 (2001).
    [CrossRef]
  17. C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
    [CrossRef] [PubMed]
  18. D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
    [CrossRef] [PubMed]
  19. J. A. Arnaud, "Degenerate optical cavities," Appl. Opt. 8, 189-196 (1969).
    [CrossRef] [PubMed]
  20. M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006).
    [CrossRef]
  21. V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998).
    [CrossRef]
  22. S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
    [CrossRef]
  23. W. Nakwaski and R. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Comm. 148, 63-69 (1998).
    [CrossRef]
  24. C. Degen, I. Fisher, and W. Elsässer, "Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999).
    [CrossRef] [PubMed]
  25. A. E. Siegman, "Lasers," University Science Books, (1986).

2006

U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
[CrossRef]

M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006).
[CrossRef]

S. Barbay, Y. Ménesguen, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, "Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier," Opt. Lett. 31, 1504-1506 (2006).
[CrossRef] [PubMed]

2005

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

2004

2003

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

2002

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

2001

Y. F. Chen and Y. P. Lan, "Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking," Phys. Rev. A 64, 063,807 (2001).
[CrossRef]

2000

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

1999

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999).
[CrossRef]

J. Scheuer and M. Orenstein, "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285(5425), 230-233 (1999).
[CrossRef] [PubMed]

S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
[CrossRef]

C. Degen, I. Fisher, and W. Elsässer, "Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999).
[CrossRef] [PubMed]

1998

W. Nakwaski and R. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Comm. 148, 63-69 (1998).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998).
[CrossRef]

1997

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997).
[CrossRef]

1992

N. N. Rosanov and N. V. Fedorov, "Diffraction switching waves and autosolitons in a saturable-absorber laser," Optik.Spectrosk. 72, 1394 (1992).

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

1990

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

1969

Ackemann, T.

I. V. Babushkin, N. A. Loiko, and T. Ackemann, "Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers," Phys. Rev. E 69, 066,205 (2004).
[CrossRef]

Ackemann, T. T.

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Arecchi, F. T.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999).
[CrossRef]

Arnaud, J. A.

Babushkin, I. V.

I. V. Babushkin, N. A. Loiko, and T. Ackemann, "Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers," Phys. Rev. E 69, 066,205 (2004).
[CrossRef]

Bache, M.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

Balle, S.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Barbay, S.

Barland, S.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Boccaletti, S.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999).
[CrossRef]

Brambilla, M.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Cara, M.

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

Chen, Y. F.

Y. F. Chen and Y. P. Lan, "Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking," Phys. Rev. A 64, 063,807 (2001).
[CrossRef]

Choquette, K. D.

S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
[CrossRef]

D???Angelo, E. J.

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

Dangoisse, D.

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

Degen, C.

Ebeling, K. J.

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Elsässer, W.

Fabre, C.

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

Fedorov, N. V.

N. N. Rosanov and N. V. Fedorov, "Diffraction switching waves and autosolitons in a saturable-absorber laser," Optik.Spectrosk. 72, 1394 (1992).

Fisher, I.

Florez, L. T.

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

Ghafouri-Shiraz, H.

Gigan, S.

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

Giudici, M.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Glorieux, P.

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

Grabherr, M.

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Green, C.

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

Hachair, X.

Harbison, J. P.

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

Hegarty, S.

S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
[CrossRef]

Hennequin, D.

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

Huyet, G.

S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
[CrossRef]

Imada, M.

Jäger, R.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Keller, U.

U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
[CrossRef]

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

Kheradmand, R.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

Knödel, T.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Kuszelewicz, R.

Lan, Y. P.

Y. F. Chen and Y. P. Lan, "Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking," Phys. Rev. A 64, 063,807 (2001).
[CrossRef]

Le Berre, M.

M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006).
[CrossRef]

Lepers, C.

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

Leroy, L.

Liu, D.

Liu, H.

Loiko, N. A.

I. V. Babushkin, N. A. Loiko, and T. Ackemann, "Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers," Phys. Rev. E 69, 066,205 (2004).
[CrossRef]

Lopez, L.

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

Louvergneaux, E.

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

Lugiato, L.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Maggipinto, T.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Maitre, A.

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

McInerney, J. G.

S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
[CrossRef]

Ménesguen, Y.

Miller, M.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Mindlin, G. B.

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

Nakwaski, W.

W. Nakwaski and R. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Comm. 148, 63-69 (1998).
[CrossRef]

Noda, S.

Ohnishi, D.

Okano, T.

Orenstein, M.

J. Scheuer and M. Orenstein, "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285(5425), 230-233 (1999).
[CrossRef] [PubMed]

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

Prati, F.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

Protsenko, I.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

Ramazza, P. L.

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999).
[CrossRef]

Ressayre, E.

M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006).
[CrossRef]

Rosanov, N. N.

N. N. Rosanov and N. V. Fedorov, "Diffraction switching waves and autosolitons in a saturable-absorber laser," Optik.Spectrosk. 72, 1394 (1992).

Sagnes, I.

Sarzala, R.

W. Nakwaski and R. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Comm. 148, 63-69 (1998).
[CrossRef]

Scheuer, J.

J. Scheuer and M. Orenstein, "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285(5425), 230-233 (1999).
[CrossRef] [PubMed]

Shum, P.

Solari, H. G.

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

Spinelli, L.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Staliunas, K.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997).
[CrossRef]

Stoffel, N. G.

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

Tallet, A.

M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006).
[CrossRef]

Taranenko, V. B.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997).
[CrossRef]

Tissoni, G.

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Tredicce, J.

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Tredicce, J. R.

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

Treps, N.

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

Tropper, A. C.

U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
[CrossRef]

Von Lehmen, A.

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

Weiss, C. O.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997).
[CrossRef]

Yan, M.

Appl. Opt.

Appl. Phys. B

M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. Lugiato, I. Protsenko, and M. Brambilla, "Cavity soliton laser based on VCSEL with saturable absorber," Appl. Phys. B pp. 913-920 (2005).
[CrossRef]

Appl. Phys. Lett.

C. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-221 (1990).
[CrossRef]

J. Opt. B: Quantum Semiclass.

T. T. Ackemann, S. Barland, M. Cara, S. Balle, R. Jäger,M. Grabherr, M. Miller, and K. J. Ebeling, "Spatial mode structure of bottom-emitting broad-area vertical-cavity surface-emitting lasers," J. Opt. B: Quantum Semiclass. 2, 406-412 (2000).
[CrossRef]

Nature

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002).
[CrossRef] [PubMed]

Opt. Comm.

W. Nakwaski and R. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Comm. 148, 63-69 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
[CrossRef]

F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, "Pattern formation and competition in nonlinear optics," Phys. Rep. 318, 1-83 (1999).
[CrossRef]

Phys. Rev E

M. Le Berre, E. Ressayre, and A. Tallet, "Spirals and vortex lattices in quasi-self-imaging divide-by-three optical parametric oscillators," Phys. Rev E 73, 036220 (2006).
[CrossRef]

Phys. Rev. A

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator," Phys. Rev. A 56, 1582 (1997).
[CrossRef]

Y. F. Chen and Y. P. Lan, "Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking," Phys. Rev. A 64, 063,807 (2001).
[CrossRef]

D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992).
[CrossRef] [PubMed]

S. Gigan, L. Lopez, N. Treps, A. Maitre, and C. Fabre, "Image transmission through a stable paraxial cavity," Phys. Rev. A 72, 023,804 (2005).
[CrossRef]

Phys. Rev. E

I. V. Babushkin, N. A. Loiko, and T. Ackemann, "Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers," Phys. Rev. E 69, 066,205 (2004).
[CrossRef]

Phys. Rev. Lett.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, "Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing," Phys. Rev. Lett. 81, 2236-2239 (1998).
[CrossRef]

C. Green, G. B. Mindlin, E. J. D???Angelo, H. G. Solari, and J. R. Tredicce, "Spontaneous symmetry breaking in a laser: The experimental side," Phys. Rev. Lett. 65, 3124-3127 (1990).
[CrossRef] [PubMed]

S. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, "Pattern Formation in the Transverse Section of a Laser with a Large Fresnel Number," Phys. Rev. Lett. 82, 1434 (1999).
[CrossRef]

Science

J. Scheuer and M. Orenstein, "Optical Vortices Crystals: Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285(5425), 230-233 (1999).
[CrossRef] [PubMed]

Spectrosk.

N. N. Rosanov and N. V. Fedorov, "Diffraction switching waves and autosolitons in a saturable-absorber laser," Optik.Spectrosk. 72, 1394 (1992).

Other

A. E. Siegman, "Lasers," University Science Books, (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the near self-imaging cavity composed of a half-VCSEL mirror, a spherical output mirror (radius of curvature R) and an intracavity lens of focal f.

Fig. 2.
Fig. 2.

Plot of the fundamental stable beam-waist size versus d 1 and L=d 1+d 2 for a cavity with f=3.81cm and R=7.5cm. The S point corresponds to a self-imaging cavity.

Fig. 3.
Fig. 3.

Experimental set-up. SM: spherical mirror; CS: Cube splitter; M: Mirror; L1,L2,L3: Lenses; OP: Optical pump; SA: Spectrum analyzer; APD: avalanche photo diode. CCD1,2: CCD cameras.

Fig. 4.
Fig. 4.

Near-field (upper row) and far-field (lower row) images of the laser for different positions of the intracavity lens : 5.323, 5.306, 5.297 and for a fixed cavity length (⋍18.6 cm). The field of view of the bottom row images is 3.2°.

Fig. 5.
Fig. 5.

Same as Fig. 4 for an intracavity-lens position: 5.246, 5.132cm, 5.087cm. Last image on the right is for a slightly misaligned cavity.

Fig. 6.
Fig. 6.

Left figure (a) : map of RF-spectra of the total laser intensity for L=18.9cm versus the lens position d 1. The right figure (b) is a zoom around the central peak.

Fig. 7.
Fig. 7.

Beat spectra of the cold cavity modes when varying the lens position. Ten transverse modes are taken into account in this simulation. The beat frequencies are plotted rescaled to the free spectral range spacing of the longitudinal modes ν 0.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d 1 * = f + f 2 R
L * = 2 f + f 2 R + R
N e = min z ( d ( z ) w ( z ) ) 2

Metrics