Abstract

In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for ~202 W of launched pump power at 976 nm. The beam propagation factor (M2) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008).
    [CrossRef] [PubMed]
  2. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, "Stable high-power continuous-wave Yb^ 3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating," Opt. Lett. 32, 1486-1488 (2007).
    [CrossRef] [PubMed]
  3. C. H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, "High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum," Opt. Lett. 31, 17-19 (2006).
    [CrossRef] [PubMed]
  4. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004).
    [CrossRef] [PubMed]
  5. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663-1665 (2006).
    [CrossRef] [PubMed]
  6. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005).
    [CrossRef] [PubMed]
  7. P. Jelger and F. Laurell, "Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser," Opt. Lett. 32, 3501-3503 (2007).
    [CrossRef] [PubMed]
  8. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999).
    [CrossRef]
  9. L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, "Laser damage resistance of photo-thermo-refractive glass Bragg gratings," Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004).
  10. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, "High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating," Opt. Lett. 33, 1204-1206 (2008).
    [CrossRef] [PubMed]
  11. J. Lumeau, L. Glebova, and L. B. Glebov, "Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass," J. Non-Cryst. Solids (2007).
  12. J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
    [CrossRef]
  13. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
    [CrossRef]
  14. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
    [CrossRef]
  15. H. Shu and M. Bass, "Modeling the reflection of a laser beam by a deformed highly reflective volume bragg grating," Appl. Opt. 46, 2930-2938 (2007).
    [CrossRef] [PubMed]
  16. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  17. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  18. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Quasi-two-level Yb: KYW laser with a volume Bragg grating," Opt. Express 15, 13930-13935 (2007).
    [CrossRef] [PubMed]

2008

2007

2006

2005

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
[CrossRef]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005).
[CrossRef] [PubMed]

2004

1999

1969

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Andrusyak, O.

Ban, V. S.

Bass, M.

Ciapurin, I.

Clarkson, W. A.

Dolgy, S. V.

Downs, E.

Efimov, O. M.

Fuerbach, A.

Galvanauskas, A.

Glebov, L.

Glebov, L. B.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999).
[CrossRef]

Glebova, L. N.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999).
[CrossRef]

Heinemann, S.

Hellstrom, J. E.

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

Hellström, J. E.

Jackson, S. D.

Jacobsson, B.

Jelger, P.

Jovanovic, N.

Khitrov, V.

Kim, J. W.

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Laurell, F.

Liu, C. H.

Machewirth, D.

Manyam, U.

Marshall, G. D.

Melnik, E. D.

Pasiskevicius, V.

Richardson, K. C.

Rotari, E.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Sahu, J. K.

Samson, B.

Schneider, J. F.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Sevian, A.

A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008).
[CrossRef] [PubMed]

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
[CrossRef]

Shaw, J.

Shu, H.

Smirnov, V.

Smirnov, V. I.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999).
[CrossRef]

Tankala, K.

Tiihonen, M.

Venus, G.

Venus, G. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
[CrossRef]

Volodin, B. L.

Werner-Zwanziger, U.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Withford, M. J.

Zanotto, E. D.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Zwanziger, J. W.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

IEEE J. Quantum Electron.

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

J. Appl. Phys.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, "High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating," Opt. Lett. 33, 1204-1206 (2008).
[CrossRef] [PubMed]

A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, "Stable high-power continuous-wave Yb^ 3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating," Opt. Lett. 32, 1486-1488 (2007).
[CrossRef] [PubMed]

C. H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, "High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum," Opt. Lett. 31, 17-19 (2006).
[CrossRef] [PubMed]

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004).
[CrossRef] [PubMed]

B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663-1665 (2006).
[CrossRef] [PubMed]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005).
[CrossRef] [PubMed]

P. Jelger and F. Laurell, "Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser," Opt. Lett. 32, 3501-3503 (2007).
[CrossRef] [PubMed]

Proc. SPIE

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166(2005).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

J. Lumeau, L. Glebova, and L. B. Glebov, "Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass," J. Non-Cryst. Solids (2007).

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, "Laser damage resistance of photo-thermo-refractive glass Bragg gratings," Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up. L1 and L2 are collimating lenses.

Fig. 2.
Fig. 2.

Measured reflectivity of VBG.

Fig 3.
Fig 3.

(a). Output power versus launched pump power. b) Typical spectral output from free-running laser compared to VBG-locked laser.

Fig 4.
Fig 4.

(a). Intensity distribution in VBGs with different grating strengths b), Simulated axial temperature drop for a VBG with a 1 kW incident beam and R=99%

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d λ B d T = 2 d n 0 d T Λ + 2 d Λ d T · n 0 = λ B ( 1 n 0 d n 0 d T + α )
I ( z ) = 1 cosh ( tanh 1 ( R ) ) · cosh ( 2 tanh 1 ( R ) · ( d z ) )
f th = π K ω p 2 P abs χ

Metrics