Abstract

In this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 µm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.9-km long classical single mode silica fiber, we have found a Brillouin and Raman gain coefficients 100 and 180 larger than fused silica, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, Boston, 2001).
  2. M. O. Deventer and A. J. Boot, "Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers," J. Lightwave Technol. 12, 585-590 (1994).
    [CrossRef]
  3. K. S. Abedin, "Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber," Opt. Lett. 31, 1615-1617 (2006).
    [CrossRef] [PubMed]
  4. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006).
    [CrossRef] [PubMed]
  5. C. Jáuregui, H. Ono, P. Petropoulos, and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber," in Proc. Optical Fiber Communications Conference (OFC2006), Piscataway USA, March 2006, PDP2 (Postdeadline paper).
  6. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1," in Proc. Optical Fiber Communications Conference (OFC2004), Anaheim USA, March 2004, PDP26 (Postdeadline paper).
  7. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
    [CrossRef]
  8. L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).
  9. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005).
    [CrossRef] [PubMed]
  10. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, "Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers," Opt. Express 14, 12063-12070 (2006).
    [CrossRef] [PubMed]
  11. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006).
    [CrossRef] [PubMed]
  12. F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
    [CrossRef]
  13. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Opt. Express 14,1280-1285 (2006).
    [CrossRef] [PubMed]
  14. J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
    [CrossRef]
  15. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
    [CrossRef]

2007 (2)

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

2006 (7)

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Opt. Express 14,1280-1285 (2006).
[CrossRef] [PubMed]

K. S. Abedin, "Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber," Opt. Lett. 31, 1615-1617 (2006).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006).
[CrossRef] [PubMed]

O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006).
[CrossRef] [PubMed]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, "Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers," Opt. Express 14, 12063-12070 (2006).
[CrossRef] [PubMed]

2005 (1)

1998 (1)

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

1994 (1)

M. O. Deventer and A. J. Boot, "Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Abedin, K. S.

Aggarwal, I.

Aitken, B. G.

Barthélémy, A.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Bashkansky, M.

Boot, A. J.

M. O. Deventer and A. J. Boot, "Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Brilland, L.

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Opt. Express 14,1280-1285 (2006).
[CrossRef] [PubMed]

Chartier, T.

Currie, S. C.

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Desevedavy, F.

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

Deventer, M. O.

M. O. Deventer and A. J. Boot, "Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Dutton, Z.

Eggleton, B.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Fatome, J.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

Finot, C.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Florea, C.

Freeman, M. J.

fu, L.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Fuerbach, A.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

González Herráez, M.

Hotate, K.

Houizot, P.

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

Islam, M. N.

Kuditcher, A.

Kulkarni, O. P.

Kumar, M.

Lamont, M. R. E.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Lee, D. J.

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Littler, I. C. M.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Lucas, J.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Mägi, E. C.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

McCarthy, J. E.

Millot, G.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

Monteville, A.

Nguyen, H. C.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Nguyen, T. N.

Nolan, D. A.

Pelusi, M. D.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Pitois, S.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

Powley, M. L.

Pureza, P.

Quemard, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Renversez, G.

Sanghera, J.

Sinardet, B.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Smektala, F.

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Opt. Express 14,1280-1285 (2006).
[CrossRef] [PubMed]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Song, K. Y.

Ta???eed, V. G.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

Terry, F. L.

Thévenaz, L.

Traynor, N.

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Opt. Express 14,1280-1285 (2006).
[CrossRef] [PubMed]

Troles, J.

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Opt. Express 14,1280-1285 (2006).
[CrossRef] [PubMed]

Xia, C.

Yeom, D. Y.

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

IEEE J. Quantum Electron. (1)

J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006).
[CrossRef]

J. Lightwave Technol. (1)

M. O. Deventer and A. J. Boot, "Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Opt. Commun. (1)

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

L. fu, V. G. Ta???eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. Y. Yeom, and B. Eggleton, "Highly nonlinear chalcogenide fibres for all-optical signal processing," Opt. Quantum Electron. 39, 1115-1131 (2007).

SPIE (1)

F. Smektala, F. Desevedavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, "Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared," SPIE 6588, 658803 (2007).
[CrossRef]

Other (3)

C. Jáuregui, H. Ono, P. Petropoulos, and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber," in Proc. Optical Fiber Communications Conference (OFC2006), Piscataway USA, March 2006, PDP2 (Postdeadline paper).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1," in Proc. Optical Fiber Communications Conference (OFC2004), Anaheim USA, March 2004, PDP26 (Postdeadline paper).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, Boston, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Pictures of the section of the Ge15Sb20S65 chalcogenide glass microstructured optical fiber elaborated by the stack and draw process.

Fig. 2.
Fig. 2.

Experimental set-up for Brillouin characterization.

Fig. 3.
Fig. 3.

Experimental Brillouin spectrum recorded at port #3 of the circulator for the 7.9-km long SMF (dashed line) and 2-m long chalcogenide fiber.

Fig. 4.
Fig. 4.

Backscattered and transmitted powers as a function of the input power (a) SMF (b) Chalcogenide fiber.

Fig. 5.
Fig. 5.

Experimental set-up of the Brillouin auto-heterodyne detection. RF spectrum of the input DFB Diode (dotted line), SMF (dashed line) and chalcogenide Brillouin backscattered signal (solid line).

Fig. 6.
Fig. 6.

Experimental set-up for Raman characterization.

Fig. 7.
Fig. 7.

(a) Optical spectrum of the frequency comb generated by multiple four wave mixing in the HNLF. (b) Spontaneous Raman scattering at the output of the 7.9-km long SMF (dashed line) and chalcogenide fiber (solid-line) for an input pump power of 80 W. (c) Output signal power as a function of input pump power for the 7.9-km long SMF fiber. Inset: Output amplified signal spectrum for a pump power of 0.9 W (d) Output signal power as a function of input pump power for the chalcogenide fiber. Inset: Output amplified signal spectrum for a pump power of 24.5 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g B K P th L eff A eff 21

Metrics