Abstract

Spectral properties of photonic crystal double heterostructure resonant cavities are calculated numerically using the three-dimensional finite-difference time-domain method. Resonance frequencies and quality factors are reported for various bound states that form near stationary points in the photonic crystal dispersion diagram. The associated electric field spatial profiles are presented indicating potential for in-plane laser optimization. In addition, Fabry-Perot oscillations are observed in the spectra.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
    [CrossRef]
  2. N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998).
    [CrossRef]
  3. C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
    [CrossRef]
  4. E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002).
    [CrossRef]
  5. B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
    [CrossRef]
  6. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
    [CrossRef] [PubMed]
  7. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007).
    [CrossRef]
  8. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phy. 78, 455-481 (2006).
    [CrossRef]
  9. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures-resonant tunnelling, waveguides and filters," J. Opt. A 4, S242-S246 (2 002).
    [CrossRef]
  10. A. Sharkawy, S. Shi, and D. W. Prather, "Heterostructure Photonic Crystals: Theory and Applications," Appl. Opt. 41, 7245-7253 (2002).
    [CrossRef] [PubMed]
  11. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  12. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006).
    [CrossRef] [PubMed]
  13. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
    [CrossRef]
  14. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
    [CrossRef] [PubMed]
  15. S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel,"Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008).
    [CrossRef] [PubMed]
  16. L. Lu, T. Yang, A. Mock, M. H. Shih, E. H. Hwang, M. Bagheri, A. Stapleton, S. Farrell, J. D. Obrien, and P. D. Dapkus, "100 ???W Edge-Emitting Peak Power from a Photonic Crystal Double-Heterostructure Laser," in Conference on Laser and Electro-Optics Technical Digest, (2007) paper CMV3.
  17. T. Yang, S. Lipson, A. Mock, J. D. O???Brien, and D. G. Deppe, "Edge-emitting photonic crystal doubleheterostructure nanocavity lasers with InAs quantum dot active material," Opt. Lett. 32, 1153-1155 (2007).
    [CrossRef] [PubMed]
  18. M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
    [CrossRef]
  19. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  20. S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid.Wave Lett. 8, 415-417 (1998).
    [CrossRef]
  21. M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
    [CrossRef]
  22. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  23. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River, NJ, 1999).
  24. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
    [CrossRef]

2008 (1)

2007 (6)

T. Yang, S. Lipson, A. Mock, J. D. O???Brien, and D. G. Deppe, "Edge-emitting photonic crystal doubleheterostructure nanocavity lasers with InAs quantum dot active material," Opt. Lett. 32, 1153-1155 (2007).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
[CrossRef] [PubMed]

B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007).
[CrossRef]

2006 (5)

E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phy. 78, 455-481 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006).
[CrossRef] [PubMed]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

2004 (1)

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

2002 (2)

A. Sharkawy, S. Shi, and D. W. Prather, "Heterostructure Photonic Crystals: Theory and Applications," Appl. Opt. 41, 7245-7253 (2002).
[CrossRef] [PubMed]

E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002).
[CrossRef]

2000 (1)

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1998 (3)

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998).
[CrossRef]

S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid.Wave Lett. 8, 415-417 (1998).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

Asano, T.

B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

Bagheri, M.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

Charbonneau-Lefort, M.

E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002).
[CrossRef]

Choi, S.-J.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

Dapkus, P. D.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Deppe, D. G.

Dey, S.

S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid.Wave Lett. 8, 415-417 (1998).
[CrossRef]

Eggleton, B. J.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Forchel, A.

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007).
[CrossRef]

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Grillet, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Hagino, H.

Hwang, E. H.

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

Istrate, E.

E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phy. 78, 455-481 (2006).
[CrossRef]

E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002).
[CrossRef]

Kamp, M.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kuang, W.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Kwon, S.-H.

Lee, M. W.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y.-H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Lipson, S.

Lu, L.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

Luther-Davies, B.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Mittra, R.

S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid.Wave Lett. 8, 415-417 (1998).
[CrossRef]

Mock, A.

T. Yang, S. Lipson, A. Mock, J. D. O???Brien, and D. G. Deppe, "Edge-emitting photonic crystal doubleheterostructure nanocavity lasers with InAs quantum dot active material," Opt. Lett. 32, 1153-1155 (2007).
[CrossRef] [PubMed]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998).
[CrossRef]

Monat, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Moss, D. J.

Noda, S.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

O???Brien, J. D.

T. Yang, S. Lipson, A. Mock, J. D. O???Brien, and D. G. Deppe, "Edge-emitting photonic crystal doubleheterostructure nanocavity lasers with InAs quantum dot active material," Opt. Lett. 32, 1153-1155 (2007).
[CrossRef] [PubMed]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Prather, D. W.

Qiao, F.

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
[CrossRef]

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Sargent, E. H.

E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phy. 78, 455-481 (2006).
[CrossRef]

E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Sharkawy, A.

Shi, S.

Shih, M. H.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Smith, C. L. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Song, B.-S.

B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

Steel, M. J.

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998).
[CrossRef]

Sunner, T.

Takahashi, Y.

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Tanaka, Y.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

Tomljenovic-Hanic, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006).
[CrossRef] [PubMed]

Wan, J.

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
[CrossRef]

Wei, Z.-J.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

Yang, T.

T. Yang, S. Lipson, A. Mock, J. D. O???Brien, and D. G. Deppe, "Edge-emitting photonic crystal doubleheterostructure nanocavity lasers with InAs quantum dot active material," Opt. Lett. 32, 1153-1155 (2007).
[CrossRef] [PubMed]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
[CrossRef]

Zi, J.

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007).
[CrossRef]

M. H. Shih,W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. O???Brien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Large frequency range of neglible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett. 73, 2084 (1998).
[CrossRef]

B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004).
[CrossRef]

Comput. Phys. Commum. (1)

N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commum. 113, 39 (1998).
[CrossRef]

IEEE Microwave Guid.Wave Lett. (1)

S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid.Wave Lett. 8, 415-417 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O???Brien, and P. D. Dapkus, "Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities," IEEE Photon. Technol. Lett. 18, 535-537 (2006).
[CrossRef]

J. Appl. Phys. (1)

C. Zhang, F. Qiao, J. Wan, and J. Zi, "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys. 87, 3174 (2000).
[CrossRef]

J. Phys. D (1)

B.-S. Song, T. Asano, and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nature. Photon. (1)

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature. Photon. 1, 449-458 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, "Theory of photonic crystal heterostructures," Phys. Rev. B 66, 075121 (2002).
[CrossRef]

Rev. Mod. Phy. (1)

E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phy. 78, 455-481 (2006).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (3)

A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River, NJ, 1999).

E. Istrate and E. H. Sargent, "Photonic crystal heterostructures-resonant tunnelling, waveguides and filters," J. Opt. A 4, S242-S246 (2 002).
[CrossRef]

L. Lu, T. Yang, A. Mock, M. H. Shih, E. H. Hwang, M. Bagheri, A. Stapleton, S. Farrell, J. D. Obrien, and P. D. Dapkus, "100 ???W Edge-Emitting Peak Power from a Photonic Crystal Double-Heterostructure Laser," in Conference on Laser and Electro-Optics Technical Digest, (2007) paper CMV3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a.) Left: Single line defect air-clad photonic crystal waveguide dispersion diagram. Dark gray indicates photonic crystal cladding modes. Light gray indicates slab radiation modes. Right: Photonic crystal double-heterostructure (PCDH) resonance spectra for positive and negative defects. (b.) Top view of PCDH with one-dimensional positive defect. (c.) Top view of PCDH with one-dimentional negative defect. Darkened circles are perturbed.

Fig. 2.
Fig. 2.

y-component of the electric field along with their spatial Fourier transforms Ey (βx ,βy ) for the modes in Table 1.

Fig. 3.
Fig. 3.

Spectra for positive and negative defect photonic crystal double-heterostructure (PCDH) cavities for points off center along x for (a.) the second PCWG band and (b.) the third PCWG band. Group index for positive and negative defect (PCDH) cavities along with group index calculated from the photonic crystal waveguide (PCWG) dispersion diagram for (c.) the second PCWG band and (d.) the third PCWG band.

Tables (2)

Tables Icon

Table 1. Resonance frequencies and quality factors for a PCDH with Δa=5% in one dimension. Frequencies are in normalized units (a/λ). Spectral resolution is 0.0002.

Tables Icon

Table 2. Resonance frequencies and quality factors for a PCDH with Δa=5% in two dimensions. Frequencies are in normalized units (a/λ). Spectral resolution is 0.0002.

Metrics