Abstract

We propose and investigate experimentally a micro-ring-resonator-based sensor with which we can measure both the concentration and temperature of glucose solution. It consists of two micro-ring resonators consecutively coupled to a bus waveguide by the overlap between them. The resonance wavelengths of the two resonators change similarly with the temperature but differently with the concentration. For that purpose, the core of just one micro-ring resonator is exposed directly to the solution. Using polymers, conventional processes, and a polymer lift-off process, we implement the sensor. Through the measurement of the fabricated sensor, we obtain its characteristics of measuring the temperature and concentration.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116, (2006).
    [CrossRef]
  2. X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
    [CrossRef] [PubMed]
  3. M.-S. Kwon and S.-Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
    [CrossRef]
  4. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7071 (2006)
    [CrossRef] [PubMed]
  5. C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
    [CrossRef]
  6. A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005).
    [CrossRef]
  7. W.-Y. Chen, V. Van, T. N. Ding, M. Du, W. N. Herman, and P.-T. Ho, "Benzocyclobutene negative-gap micro-ring notch filters," in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper SWA6.
  8. BeamPROPTM is available from RSoft, Inc., http://www.rsoftinc.com.
  9. B. Bhola and W. H. Steier, "A novel optical microring resonator accelerometer," IEEE Sens. J. 7, 1759-1765 (2007).
    [CrossRef]
  10. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
    [CrossRef]

2007 (2)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

B. Bhola and W. H. Steier, "A novel optical microring resonator accelerometer," IEEE Sens. J. 7, 1759-1765 (2007).
[CrossRef]

2006 (3)

P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116, (2006).
[CrossRef]

P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7071 (2006)
[CrossRef] [PubMed]

C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

2005 (2)

A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

2002 (1)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Baets, R.

Bhola, B.

B. Bhola and W. H. Steier, "A novel optical microring resonator accelerometer," IEEE Sens. J. 7, 1759-1765 (2007).
[CrossRef]

Bienstman, P.

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Dalton, L. R.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Debackere, P.

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Ksendzov, A.

Kwon, M.-S.

M.-S. Kwon and S.-Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

Lambeck, P. V.

P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116, (2006).
[CrossRef]

Lin, Y.

Rabiei, P.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Scheerlinck, S.

Shin, S.-Y.

M.-S. Kwon and S.-Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

Steier, W. H.

B. Bhola and W. H. Steier, "A novel optical microring resonator accelerometer," IEEE Sens. J. 7, 1759-1765 (2007).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Zhang, C.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

IEEE J. Lightwave Technol. (1)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer microring filters and modulators," IEEE J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M.-S. Kwon and S.-Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

IEEE Sens. J. (1)

B. Bhola and W. H. Steier, "A novel optical microring resonator accelerometer," IEEE Sens. J. 7, 1759-1765 (2007).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116, (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

W.-Y. Chen, V. Van, T. N. Ding, M. Du, W. N. Herman, and P.-T. Ho, "Benzocyclobutene negative-gap micro-ring notch filters," in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper SWA6.

BeamPROPTM is available from RSoft, Inc., http://www.rsoftinc.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic diagram of the proposed sensor, (b) waveguide structures of MRR 1 (top) and 2 (bottom).

Fig. 2.
Fig. 2.

(a). Simulated structure. In the simulation, θ=11.5°. The gap between the straight and bent waveguides is defined as the distance between their centers. (b) Simulated efficiency of coupling to the bent waveguide and that of transmission through the straight waveguide.

Fig. 3.
Fig. 3.

Images of the fabricated sensor: (a) the top view of MRR 2, and (b) the cross-section of MRR 2.

Fig. 4.
Fig. 4.

(a). The measured transmission spectrum of the sensor dipped into pure DI water at 22 °C. (b) Changes of the transmission spectrum due to a temperature increase of 1 °C (the green line with triangles) and a concentration increase of 1.5 % (the red line with circles). Each number means that the resonance band corresponds to the MRR with the number.

Fig. 5.
Fig. 5.

Center wavelength changes (a) Δλ c,1 and (b) Δλ c,2 related to MRR 1 and 2, respectively, as functions of the concentration for several temperatures. The solid lines are obtained from linear fitting of the data. The error bars denote the inaccuracy of the wavelength shift inferred from that of measured temperature.

Fig. 6.
Fig. 6.

Center wavelength changes (a) Δλ c,1 and (b) Δλ c,2 related to MRR 1 and 2, respectively, as functions of the temperature for several concentrations. The solid lines are obtained from linear fitting of the data. The error bars denote the inaccuracy in measuring temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ c , i = 2 π R m i ( N eff , i n a Δ n a + N eff , i T Δ T + N eff , i λ Δ λ c , i ) ,
[ Δ λ c , 1 Δ λ c , 2 ] = [ S C , 1 S T , 1 S C , 2 S T , 2 ] [ Δ C Δ T ] ,

Metrics